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Solution-Adaptive Structured-Unstructured Grid Method for
Unsteady Turbomachinery Analysis, Part II: Results

Sanjay R. Mathur*
lowa State University, Ames, lowa 50011
Nateri K. Madavant
MCAT Institute, NASA Ames Research Center, Moffett Field, California 94035

and

R. Ganesh Rajagopalani
lowa State University, Ames, lowa 50011

A solution-adaptive method for the time-accurate analysis of two-dimensional flows in multistage turboma-
chinery is presented. The method employs a hybrid structured-unstructured zonal grid topology in conjunction
with appropriate modeling equations and solution techniques in each zone, thus combining the advantages of
both structured and unstructured grid methods. An efficient and robust grid adaptation strategy is also used
for the unstructured grid regions. The numerical methodology is presented in detail in Part I of this article.
Results obtained using this method for different turbomachine flow configurations are presented in this article.
The numerical results compare well with available experimental data and other structured grid based simulations.

Introduction

ART 1 of this article describes a hybrid-grid procedure

for the analysis of unsteady turbomachinery flows that
combines the advantages of both unstructured and structured
grid methodologies. The method is implemented within the
zonal framework of Ref. 1, which is generalized to include
both structured and unstructured grid domains. The region
in the immediate vicinity of the airfoils (inner region) is dis-
cretized using structured grids, while the rest of the domain
(outer region) is discretized using an unstructured triangular
grid. In the viscous inner regions, the Navier-Stokes equations
are solved using an implicit, third-order accurate, upwind-
biased scheme. In the inviscid outer region, the Euler equa-
tions are solved using either a central difference scheme or
an upwind scheme that incorporates a linear reconstruction
procedure. The solution in the outer unstructured region is
advanced in time explicitly using the same time-step values
as for the structured regions which are time-advanced in an
implicit manner. An efficient and robust grid adaptation strat-
egy with both grid refinement and coarsening capabilities is
also used for the unstructured grid. For generality, three-
dimensional effects of stream-tube contraction are also mod-
eled. The present method is capable of treating multistage
. turbomachinery configurations. .

Part I of this article described the domain decomposition,
grid generation, inner and outer grid solution procedures, grid
adaptation strategy, and the various boundary conditions used.
Results obtained using this method for different turbomachine
flow configurations are presented in this article.
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One of the main objectives of the present hybrid grid ap-
proach is to utilize the solution adaptive capabilities of un-
structured grids to improve the resolution of important flow
features. Several different test problems were chosen to pro-
vide validation of the present method. All these problems
involve unsteady or periodic flow and were chosen to dem-
onstrate the capability to adapt to three types of features of
general interest 1) flow discontinuities such as shocks, 2) vor-
tices arid wakes, and 3) specific inlet profile features such as
a hot streak in a turbine. The first two demonstration cal-
culations involve the flow in a shock tube and the flow as-
sociated with a Lamb-type vortex convecting in a freestream.
These simplified problems were performed using only the
unstructured grid solvers. The third computation is a single-
stage axial turbine computation using the hybrid-grid ap-
proach. The final computation is an analysis of the passage
of a hot streak through the same axial turbine.

Flow in a Shock Tube

The classical shock-tube problem is a good test case for
evaluating unsteady Euler solvers and the behavior of nu-
merical schemes near discontinuities. The problem configu-
ration is essentially one-dimensional and consists of two masses
of gas, one at a higher pressure and density than the other,
separated by a diaphragm. As the diaphragm is ruptured at
t = 0, a shock wave develops and propagates into the quies-
cent low-pressure gas. The contact surface also travels in the
same direction. At the same time an expansion fan propagates
towards the high-pressure region. The problem is completely
specified in terms of the initial pressure and density (or tem-
perature) ratios and the specific heat ratios in the two gases.
The exact solution can be determined using standard gas dy-
namics relations.

In the present study, the problem was solved on a two-
dimensional domain extending from x/L = 0 to x/L = 1.0,
with the diaphragm located at x/L = 0.5, where L is a ref-
erence length of unity. The one-dimensional nature of the
problem was imposed by using periodic boundary conditions
in the y direction. The initial ratio of pressure in the left and
right halves of the domain, p, /p., was chosen to be 10. Sim-
ilarly, the density ratio p, /pg was set to 8, and the specific
heat ratio y was set to 1.4 in both gases. All the results re-
ported are at ¢ = 0.2 (¢ is time nondimensionalized with re-
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Fig. 1 Pressure and density distributions in shock tube at ¢t = 0.2.

spect to L/V pgl/pg) with the shock located at approximately
x/L = 0.9, and were obtained using the upwind scheme with
linear reconstruction.

Figure 1 compares the pressure and density profiles along
the length of the shock tube obtained with and without grid
adaptation. In this problem, the temperature gradient is used
as the adaptation indicator since it can distinguish the two
discontinuities as well as the expansion fan. These compu-
tations were performed on a coarse starting mesh (equivalent
to a structured grid of 50 X 10 points) in order to highlight
the subsequent grid adaptation, and therefore the comparison
with the exact solution is only fair. Improvements resulting
from the adaptation are still evident, particularly at the pres-
sure shock. The adaptive grids at four different instants in
time are presented in Fig. 2 and show clearly the increased
grid densities in the vicinity of the two discontinuities and the
expansion fan.

Lamb Vortex Computation

The Lamb vortex is an analytical solution for the Euler
equations and is described by the following axisymmetric ve-
locity distribution in polar coordinates:

V(ir,8) =0
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Fig. 3 Timc history of minimum pressure for the Lamb vortex com-
putation.

where I is the strength of the vortex, and a is a characteristic
radius. For r greater than about 3a, the above distribution
approaches the potential vortex. The radial variation of pres-
sure and density is obtained by solving the » and # momentum
equations. It can be shown that if the grid is moved with a
constant speed, the exact solution simply translates in the
opposite direction with an equal speed. The Lamb vortex thus
provides an excellent test case for studying the vorticity con-
vecting properties of unsteady Euler solvers.

The initial unstructured grid for this problem is generated
by first choosing an appropriate radial clustering. Points are
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Fig. 4 Pressure contours for the Lamb vortex computation: a) orig-
inal grid and b) adaptive grid.

b) |

Fig. 5 Grids (shaded by entropy) for the Lamb vortex computation:
a) original grid and b) adaptive grid.

then distributed along the circumference at each radius to
obtain nearly equilateral triangles at each radius. The grid
thus generated consists of roughly 1800 points and 3500 tri-
angles. The exact solution is specified at each grid point as
the starting solution, and the vortex is allowed to move in the
x direction by imposing a grid velocity in the negative x di-
rection. The calculations reported here were carried out for
I" and a of unity and with a time step of 0.04.

As the flow evolves, an estimate of the numerical diffusion
resulting from the grid can be obtained by observing the time-
history of the minimum pressure in the domain. This minimum
pressure occurs at the vortex center and should, in theory,
remain constant. But, as depicted in Fig. 3, it gradually ap-
proaches the freestream value because the original grid, which
was generated to resolve the vortex at its starting location, is
rather coarse away from it. Significant improvements in the
integrity of the vortex can be achieved, however, if the grid
is adapted as the solution evolves. The rise in the minimum
pressure is substantially smaller. The increased coherence in
the vortex structure and strength as a result of grid adaptation
can also be appreciated by comparing Figs. 4a and 4b which
show the pressure contours at ¢ = 16.0 for the original and
adaptive grids, respectively. The pressure contours have been
drawn to the same shading maps to permit direct comparison.
The loss in pressure gradients and magnitudes when the grid
is not adapted is evident.

The grid adaptation in this case is based on the entropy
function which serves as a good indicator of vortex location.
The grid is adapted every 50 time steps and each adaptation
results in the addition and removal of approximately 50—100

points. The overhead due to the adaptation process is there-
fore negligible compared to the total solution time. Close up
views of the original and adaptive grid at r = 16.0 are shown
in Fig. 5. The grids are shaded according to the local entropy
value. The adaptive grid at this stage consists of roughly 2000
points and 3800 triangles. The slight increase in the total
number of grid points from the original grid is as a result of
the deletion strategy used. Since the deletion process only
deletes approximately a third of the points from a region that
is coarsened while the refinement procedure increases the
number of points at a faster rate, the total number of points
tends to increase if the adaptation is not carried out very
frequently.

Low-Speed Axial Turbine Computation

In order to validate the hybrid grid code, the flow in an
experimental turbine configuration was computed. The ge-
ometry considered is the low-speed, single-stage axial turbine
that has been extensively tested by Dring et al.? and the ref-
erences cited therein. This configuration has also been com-
puted in Refs. 1 and 3 using the zonal structured-grid ap-
proach, and was chosen to allow direct comparisons with these
earlier results. The geometry consists of 22 stator airfoils and
28 rotor airfoils. Turbomachines typically are designed with
unequal airfoil counts in the stator and rotor rows in order
to minimize vibration and noise. Since a complete simulation
including all the airfoils in the stator and rotor rows would
be rather expensive, the approach used here is to approximate
the ratio of the number of stator to rotor airfoils by the ratio
of two small integers, specifically, 3:4. A periodicity boundary
condition is used to simulate the presence of the other airfoils.
However, this requires a small rescaling of the stator airfoil
geometry (by a factor of 22/21) in order to correctly account
for blockage effects. The pitch-to-chord ratio of the airfoils
is not changed during the rescaling process.

As mentioned before, a zonal strategy is adopted where
the flow domain is divided into several subregions or zones.
The regions surrounding the stator and rotor airfoils are dis-
cretized with “O” grids (inner zones) that extend 0.5 in. in
the normal direction from the airfoil surfaces. (The average
chord length of the stator and rotor airfoils is roughly 6.0 in.)
The outer zones abut each other along the slip boundary, and
slip past each other as the rotor airfoils move downward (i.e.,
the rotor grids move relative to the stator grids). Structured
grids are used in the inner zones, and unstructured triangular
meshes in the outer zones. The calculation was performed
with three stator and four rotor airfoils. A close up view
(showing one stator and two rotor airfoils) of the composite
grid used in the present calculations is shown in Fig. 6. The
structured O grids around the individual airfoils consists of
181 x 20 points, and the unstructured meshes in the outer

‘zones of the stator and rotor rows have 11,360 and 13,707

points, respectively.

The turbine operating conditions were chosen to corre-
spond to the experiments of Ref. 2. The inlet Mach number
used in the calculations was 0.07, and the unit Reynolds num-
ber was 100,000/in. based on inlet conditions. The Baldwin-
Lomax turbulence model was used to determine the eddy
viscosity; the kinematic viscosity was calculated using Suth-
erland’s law.

The results presented below were obtained by integrating
the governing equations and the boundary conditions de-
scribed above. Three iterations of the inner grid algorithm
were performed at each time step. Approximately five rotor
cycles (a rotor cycle corresponds to the motion of the rotor
through an angle equal to 2#/N, where N is the number of
rotor airfoils) were required to eliminate the initial transients
and establish a solution that was periodic in time.

Figures 7 and 8 show the time-averaged pressure coefficient
C, as a function of the axial distance for the stator and rotor
airfoils, respectively. In these (and subsequent) figures, the
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Fig. 6 Hybrid structured-unstructured grid for the low-speed axial turbine computation.
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Fig. 7 Time-averaged pressure distribution on the stator for the low-
speed axial turbine computation.

axial distance is normalized by a reference length, L = 1.0
in. The pressure coefficient is defined as

_ pavg - (pl)inlct
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C

P

where p,,, is the static pressure averaged over one (stator or
rotor) cycle, (p, )i 18 the average total pressure at the inlet,
P 18 the average density at the inlet, and w is the rotor
velocity. The computed results compare well with the exper-
imental data, and although not shown in the figures, with
earlier structured-grid computations.'

The amplitude of the temporal pressure fluctuation is a
measure of the unsteadiness of the flow. Figures 9 and 10
show pressure amplitudes C, on the surface of the stator and
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Fig. 8 Time-averaged pressure distribution on the rotor for the low-
speed axial turbine computation.

rotor, respectively, plotted as a function of the axial distance.
The quantity C, is defined as

C — Pmax ™ Pumin

P 1 2
2Pinter®

where p,..,. and p;, are the maximum and minimum pressures
that occur over a cycle at a given point. The numerical am-
plitude distribution shows most of the qualitative features that
are found in the experimental results. Some differences exist
between the numerical predictions and the experimental data
on the suction side of the stator; this may be because of the
small difference between experimental and numerical rotor/
stator pitch ratios, and because of three-dimensional effects.
As in the case of the time-averaged results, these time-re-
solved results are in good agreement with the structured-grid
results presented in Ref. 1.
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Fig. 9 Pressure amplitudes on the stator airfoil for the low-speed
axial turbine computation.
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Fig. 10 Pressure amplitudes on the rotor airfoil for the low-speed
axial turbine computation.

Figure 11 shows pressure contours corresponding to a par-
ticular instant in time. The figure clearly shows the main
features of the time-averaged pressure distributions shown in
Figs. 7 and 8, viz., the expansion and subsequent recompres-
sion of the flow on the suction side of both the stator and
rotor airfoils, and the nearly constant pressure region followed
by an expansion on the pressure sides of the airfoils. The
contours in the four rotor blade passages show the time-vary-
ing nature of the flow and its interaction with the pressure
field of the stator blades. Note that the contours are contin-
uous across the various zonal interfaces between the struc-
tured and unstructured grids as well as between the stationary
stator and moving rotor airfoils.

Turbine Hot-Streak Computation

This calculation simulates the effect of inlet temperature
profile variation on the flow in a turbine stage. Such situa-
tions, referred to as ‘“‘hot-streaks,” arise in the combustion
chamber and can affect the surface temperature distribution
in the adjacent turbine stage. This type of calculation using
an unsteady Navier-Stokes solver was first reported by Rai

Fig. 11 Instantaneous pressure contours for the low-speed axial tur-
bine computation.
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Fig. 12 Average temperature distributions on the rotor surface for
the turbine hot-streak computation.

and Dring* and it demonstrated the validity and usefulness of
such an approach for analyzing this phenomenon.

The turbine configuration used is the same as the single-
stage, low-speed turbine used in Refs. 2 and 4, with the re-
scaled blade count of one stator and one rotor airfoil. The
flow and operating conditions are also identical, except that
the inlet temperature is modified by introducing a streak of
hot gas, at a temperature 1.2 times the rest of the inlet flow.
The streak is centered midway between the stator airfoils and
extends over a quarter of the inlet boundary, so that the
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average inlet temperature is 1.057... The inlet Mach number
and pressure are kept constant, thus resulting in a hot-streak
density of p,./1.2 and velocity of u.. X V1.2. The initial grid
is of a size similar to the grid used for the 3—4 simulation,
and consists of 181 x 20 points for the inner regions and
approximately 3500 points for the two outer unstructured zones.
The converged periodic solution for the problem without the
hot-streak is used as the starting solution. It takes about three
to four cycles for the hot-streak to develop through the do-
main and for the solution to achieve a periodic state. The
calculation is then continued for a few more cycles with ad-
aptation of the outer unstructured grids.

Since the hot-streak is introduced midway between two
stator airfoils and there is no disturbing mechanism, it passes
through the stator passages without significant alterations to
the temperature on the stator surfaces. The streak itself
undergoes the expected contraction as a result of the accel-
eration of the flow. The flowfield in the rotor, on the other
hand, is altered because of the streak. Its effect at the rotor
surface can be estimated from the time-averaged tempera-

1.0

08 |

0.4

0.2 [ e Rai and Dring

— - Present Method (Original Grid)
« Present Method (Adaptive Grid)

0""
0 5 10 15 20 25
s/L

Fig. 13 Temperature amplitude distributions on the rotor surface
for the turbine hot-streak computation.
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tures on the surface. These are plotted in Fig. 12 as a function
of the arc length s along the rotor surface measured from
the trailing edge, and increasing towards the suction side
of the airfoil. (The arc length is normalized by a reference
length, L = 1.0 in.) The average temperature coefficient C,
is defined as

T,,-T.
T, - T,

avg.in

Cr=

where T,,, is the average temperature at a given point, and
T,gin 1s the average inlet temperature.

It should be noted that the comments made in Ref. 4 apply
for the current computation as well, and must be kept in mind
while comparing these results with the experimental data. In
addition to the differences between the experimental config-
uration and the present calculation, such as the rescaling of
the geometry that have already been noted above, there are
several other important differences. In the experiment, the
streak was introduced only through one stator passage, whereas
the periodic boundary condition of the numerical simulation
implies a hot streak through every stator passage. The present
two-dimensional simulation is equivalent to the hot streak
extending across the entire span, whereas in the experiment
the hot gas entered through a circular pipe existing over ap-
proximately one-third of the span. Furthermore, there are
significant differences in the streak temperature, turbine axial
gap, and flow coefficient of the experiment and the present
calculation (details may be found in Ref. 4). It is interesting
to note, however, that in spite of these major differences, the
computed results of Fig. 12 do show most of the qualitative
features observed in the experiment, such as the accumulation
of the hot gases on the pressure surface of the rotor airfoils.
It is apparent from the figure that the adaptation results in
rather significant changes in the temperature magnitudes. The
pressure side peak in the temperatures is observed to be about
35% higher than the average inlet temperature (which cor-
responds to a Cr of 1.0), whereas without adaptation, this
peak is only found to be roughly equal to the average inlet
temperature. The present adaptive grid results agree well with
the structured-grid results of Ref. 4, represented in the figure
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Fig. 14 Instantaneous temperature distributions for the turbine hot-streak computation; original grid.
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Fig. 15 Instantaneous temperature distributions for the turbine hot-streak computation; adaptive grid.
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by the dotted lines. Note that the results of Ref. 4 were
obtained using a uniformly fine grid.

The unsteady temperatures also exhibit a similar trend, as
is shown in Fig. 13, where the temperature amplitudes on the
rotor surface are plotted as a function of the arc length. The
temperature amplitude coefficient C;, defined as

i T Tmin

CT N Ths - Tx

where T, and T, are the maximum and minimum tem-
peratures that occur over a cycle at a given point, and T, is
the temperature of the hot-streak. From the figure it is clear
that the temperature variation on the suction surface of the
rotor are of the same order as the spatial variation of tem-
peratures at the inlet. It is also interesting to note that the
highest temperature amplitudes occur on the suction surface,
while the highest average temperatures occur on the pressure
side. This indicates that the maximum temperature on the
suction side must occur for only a small fraction of the time.

The redistribution of the hot streak can be seen from Fig.
14, which shows the instantaneous temperature distributions
at four time steps during one cycle. Remarkable differences
in these distributions are observed when the grids are adapted
to the solution, as shown in Fig. 15. Not only is the streak
more sharply defined, comparison of the color (the two figures
have been drawn with the same color map), clearly shows the
loss in the streak temperature that occurs quite close to the
inlet if the grids are not adapted. On the rotor side, the V-
shaped remnants of the hot streak are also captured more
sharply.

The reasons for this loss in streak temperature become
apparent when one looks at the grid near the inlet to the
stator in Fig. 16. Although the location of the hot-streak at
the inlet boundary is known a priori for this test problem,
this is not the case in practical applications. Hence, this in-
formation was not used to generate the initial grid. Asaresult,
the grid is rather coarse at the inlet and leads to very poor
resolution of the high gradients. When the grid adaptation
procedure is invoked, it initially responds to the false gradients
introduced by the diffusion of the streak at the inlet. The
stator grid then gradually approaches a near steady state as
the solution evolves. The obvious choice as the indicator func-
tion for the present problem is the temperature gradient, and
the adaptive grid is seen to conform to the high gradient at
the edges of the hot-streak, but recovers the original coarse
mesh at the center of the streak where temperatures are high
but the gradients are not. The high inlet temperature is thus
convected without loss to the rotor airfoils, and this resuits
in the improved solution quality noted above.

The adaptation in the present problem is carried out every
50 time steps. During the initial transients, the number of
points added and deleted varies considerably, but after the
stator grid stabilizes, the number of points added on the stator

grid at each adaptation stage is only on the order of 10. After
that it is sufficient to adapt the grids at every 100-200 steps.
The rotor grid keeps changing because of the periodic nature
of the flow. A representative view of the instantaneous grid
corresponding to + = 0.0 (i.e., start of a cycle) is shown in
Fig. 17. The adaptation to the remnants of the hot-streak is
clearly visible.

Summary

A solution-adaptive hybrid-grid method has been devel-
oped and applied to the two-dimensional analysis of unsteady
flows in turbomachinery. The present approach uses a hybrid
structured-unstructured zonal grid topology along with mod-
eling equations and solution techniques that are most appro-
priate in the individual domains, thus combining the advan-
tages of both structured and unstructured grid methods. An
efficient and robust grid adaptation strategy, including both
grid refinement and coarsening capabilities, is incorporated.
The grid adaptation is also exploited to simplify the transfer
of information across the moving interface between adjacent
stator and rotor grids. The present method is capable of treat-
ing multistage turbomachinery configurations. For generality,
three-dimensional effects of stream tube contraction are also
included in the analysis. Results obtained using this method
for different turbine configurations are presented and shown
to compare well with available experimental data and other
structured grid based simulations.
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