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Two important approximations have been incorporated in much of the work with approximate analysis of
unsteady motions in combustion chambers: 1) truncation of the series expansion to a finite number of modes,
and 2) time-averaging. A major purpose of the present analysis is to investigate the limitations of those ap-
proximations. A continuation method is used to determine the limit cycle behavior of the time-dependent
amplitudes of the longitudinal acoustic modes in a combustion chamber. The results show that time-averaging
works well only when the system is slightly unstable. In addition, the stability boundaries predicted by the two-
mode approximation are shown to be artifacts of the truncation of the system. Systems of two, four, and six
modes are analyzed and show that more modes are needed to analyze more unstable systems. For the six-mode
approximation with an unstable second-mode, two bifurcations are found to exist: 1) a pitchfork bifurcation
leading to a new branch of limit cycles, and 2) a torus bifurcation leading to quasiperiodic motions.

I. Introduction

B ECAUSE combustion instabilities arise normally as lin-
early unstable motions, nonlinear processes must be

present to prevent the instabilities from growing without limit.
Experimentally, therefore, nonlinear behavior is always ob-
served. Serious analysis of nonlinear combustion instabilities
began with work by Crocco,1 Sirignano and Mitchell,2 and
Zinn3-4 at Princeton in the 1960s. The results reported here
are the most recent from a continuing investigation begun in
the early 1970s, using a form of Galerkin's method.5"7

This approach is based on expressing any unsteady motion
in a combustion chamber as a synthesis of normal modes

where i/>,,(jt) are normal modes for the combustion chamber
geometry in question. Spatial averaging converts the problem
of solving the system of nonlinear partial differential
equations to the much simpler problem of solving a system
of nonlinearly coupled ordinary differential equations for
the time-dependent amplitudes of the normal modes of the
form

where Fn is a nonlinear function of 77,,, i]n, and time. Various
tests have confirmed that accurate results can be obtained
with this procedure for a broad range of conditions.8 Hence,
this system of equations, representing a collection of nonlinear
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oscillators, seems to be an acceptable formulation for studying
various aspects of observed behavior understood poorly or
not at all.

There are two main classes of nonlinear problems in this
subject: 1) determining the conditions for existence and sta-
bility of limit cycles; and 2) determining the conditions under
which a linearly stable system may become unstable when
subjected to an appropriate disturbance. As a practical mat-
ter, two approximations have commonly been used to simplify
the analysis and to try to obtain simpler methods for routine
applications: 1) time-averaging converts the second-order
equations to a first-order system governing the slowly chang-
ing amplitudes and phases of the modes; and 2) in any case
the expansion must be truncated at a finite number of modes.
It seems that the possible consequences and validity of those
approximations can be understood only by solving the original
system of second-order equations.

One approach is simply to compute numerical simulations
for ranges of parameters characterizing the system. That tends
to be a somewhat arbitrary approach. We choose here to apply
some elementary notions of dynamical systems theory and
construct bifurcation diagrams. Numerical simulations are then
computed only for particularly interesting cases. We believe
that this will provide a more systematic approach to under-
standing the matter cited above.

The equations analyzed in this article represent the time
evolution of the amplitudes of the longitudinal acoustic modes
in a combustion chamber of uniform cross section. Linear
contributions from the combustion processes, gas/particle in-
teractions, boundary conditions, and the interaction between
the steady and unsteady flowfields are included along with
nonlinear contributions from the gas dynamics. The equations
representing the time evolution of the amplitudes of the lon-
gitudinal acoustic modes were obtained from Paparizos and
Culick9 and have the form

(1)
508
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Table 1 First-mode instability

w, - 5654.87
n
1
2
3
4
5
6

Table 2

<*„, s-1

0-»300
-324.8
-583.6
-889.4
- 1262.7
-1607.6

Second-mode

0,,, rad/s
12.9
46.8

-29.3
-131.0
-280.0

0.0

instability

o>, - 2827.435
/?
1
2
3
4
5
6

«,„ s-1

-84.9
0-»300
-161.0
-279.4
-392.7
-520.2

0,,, rad/s
-66.7

12.9
108.2
46.8
8.8

-29.3

where

r<*) =^-m 2yi(n - i)

I
2yi(n + i)

(y - l)o>:

i(n - 0(7 - 1)1

i(n + 0(7 - 1)1

4y
1 [rc2 - 2/(« -

2i(n

This system of equations has the form of a system of nonlin-
early coupled oscillators. The parameters an and 0n account
for the linear processes mentioned above and represent the
linear damping and frequency shift of each mode, respec-
tively. Parameter values used in this study were obtained from
Paparizos and Culick9 and are listed in Tables 1 and 2.

Since this study is restricted to longitudinal acoustic modes
in a combustion chamber of uniform cross section, the modal
frequencies are related by the relation a>n = nco^ Substituting
this relation into Eq. (1) and nondimensionalizing time with
the fundamental acoustic frequency (i = o^, where t is
nondimensional time) results in the system

-"^ \CWiiniin-i + —?DWwn_
/ = i L o>T

- 2 Y r(2)TJ T) + —— 7)(2>T7T)^ ^-J *-«/ 'In'ln+i ~ -, ̂  ni 'li'ln + i
/=! L ^T J

(2)

where

en = (0,M)

To analyze Eq. (2) with techniques from dynamical systems
theory and continuation methods it must be written as a first-
order system. This can be done by defining the new variable

(3)

The system then has the form

*, = £,

£, = -n(n - 20n)rln + 2dn

"

(4)

where

-1

2i(n

Time-averaging is applied to Eq. (4) by assuming that the
time-dependent amplitude of each acoustic mode has the form

-nn(i) = An(t)sin(nt) + Bn(t)cos(ni) (5)

Substituting Eq. (5) into Eq. (4) and averaging the resulting
system over the period (0 -» 2ir) results in the system9

A = SnBn + -

B,, = &nBn -

where

- Bn+lA,)

K = (y + l)/8y

(6)

Steady states of Eq. (6) represent limit cycles of the time-
dependent amplitudes of the acoustic modes rjn7 due to the
time dependence specified by Eq. (5).

The zero solution of Eq. (6) (An = Bn = 0) represents a
zero pressure perturbation of the original system. The stability
of this steady state is given by the eigenvalues of the linearized
system

A,, = &„ ± ien

Thus, when an is zero, this system undergoes a Hopf bifur-
cation. Hopf bifurcations lead to the existence of limit cycles,
so when an is positive, Eq. (6) will undergo limit cycle be-
havior. This seems to suggest that time-averaging did not
make the continuation problem any easier because the time-
averaged system also contains limit cycles. Thus, when ap-
plying the continuation method to the time-averaged system
it is necessary to continue a limit cycle as opposed to a steady
state, This is an important distinction because the computer
time required to determine the limit cycles of a system with
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continuation methods is several orders of magnitude longer
than the computer time required to determine the steady
states of the system. Time-averaging does reduce the com-
putational time required to do numerical simulations as the
high-frequency content of the pressure fluctuation is elimi-
nated by time-averaging, making it possible to use larger time
steps in the simulation.

Applying time-averaging to Eq. (4) did not convert the limit
cycles of Eq. (4) to steady states of Eq. (6), because the van
der Pol transformation applied before time-averaging [Eq.
(5)] did not use the proper frequency in the sine and cosine
terms. The eigenvalues of the system obtained by linearizing
Eq. (4) about the origin are

A,, = &n ± inVl - (20,» - (ajn)2 = &„ ± iu>n

and so the van der Pol transformation should have the form

It is not possible to apply time averaging with this van der
Pol transformation as the frequencies H,, are not integer mul-
tiples of each other. A limit cycle of a given frequency will
exist for the complete system through the interaction of the
nonlinear terms, but it is not possible to calculate this fre-
quency analytically.

Since Eq. (6) is expected to contain limit cycles as asymp-
totic motions it is useful to transform Eq. (6) into polar co-
ordinates. Applying the coordinate transformation

An = rn cos </>„

Bn = rn sin <j>n (8)
to Eq. (6) results in the system

rn = 6tnrn + - HK 2j rirn_l cos(</>, + </>„_! — </>„)

(9)

Paparizos and Culick9 have shown that in the limit cycle one
would expect the frequencies of the time-dependent ampli-
tudes of the acoustic modes [con - n(/)n(i)] to be integer
multiples of each other. Since a)n = na){ for the case consid-
ered here, one might expect

in the limit cycle. With this in mind it seems useful to replace
the variables </>„ by the new variables i/rn = n4>{ - </>„. Sub-
stituting this new variable into Eq. (9) results in the system

/ = i

n = 1, . . . ,
rr _

/i = 2, . . . , N (10)

Note that (/>, is zero by definition, so the dimension of the
system is reduced from 2N to 2N ~ 1. This reduction in the
order of the system is possible because the reference value of
the phase is arbitrary; the important quantity is the difference
between the phases of the various modes. Thus, one can
define all phases relative to the phase of the fundamental
mode as was done above.

II. Theoretical Background
A. Dynamical Systems Theory

Dynamical systems theory is a methodology for studying
systems of ordinary differential equations. Many systems have
been studied using dynamical systems theory, but it has not
been used to study nonlinear acoustics in combustion cham-
bers. The important ideas of dynamical systems theory used
in this report will be introduced in the following paragraphs.
More information can be found in the book of Guckenheimer
and Holmes.10

The first step in analyzing a system of nonlinear differential
equations, in the dynamical systems theory approach, is to
calculate the steady states of the system and their stability.
Steady states can be determined by setting all time derivatives
equal to zero and solving the resulting set of algebraic equa-
tions. The Hartman-Grobman Theorem (Ref. 10, Ghap. 1,
p. 13) proves that the local stability of a steady state can be
determined by linearizing the equations of motion about the
steady state and calculating the eigenvalues. A steady state
is linearly stable if the real parts of the eigenvalues are neg-
ative and linearly unstable if any eigenvalue has a positive
real part. In the neighborhood of a steady state (i.e., a region
where the linear analysis is valid) the system will be attracted
to the steady state if it is stable and repelled from the steady
state if it is unstable.

The Implicit Function Theorem (Ref. 11, Chap. 2, pp. 13,
14) proves that the steady states of a system are continuous
functions of the parameters of the system. Thus, the steady
states of the nonlinear acoustic equations are continuous func-
tions of the linear stability parameters of each mode <*„. Sta-
bility changes can occur as the parameters of the system are
varied in such a way that the real parts of one or more ei-
genvalues of the linearized system change sign. Changes in
the stability of a steady state lead to qualitatively different
responses for the system and are called bifurcations. Stability
boundaries can be determined by searching for steady states
which have one or more eigenvalues with zero real parts.

There are many types of bifurcations and each type has a
different effect on the response of the system. Qualitative
changes in the response of the system can be predicted by
determining how many and what type of eigenvalues have
zero real parts at the bifurcation point. Bifurcations for which
one real eigenvalue is zero lead to the creation or destruction
of two or more steady states. Bifurcations for which one pair
of imaginary eigenvalues has zero real parts can lead to the
creation or destruction of periodic motions. Bifurcations for
which more than one real eigenvalue or more than one pair
of imaginary eigenvalues have zero real parts lead to very
complicated behavior and are beyond the scope of this report.

Results presented in this report will also be concerned with
the limit cycle behavior of dynamical systems. In particular,
the pressure oscillations referred to as combustion instabilities
in combustion systems are represented by limit cycles of the
amplitude equations. Limit cycles can undergo bifurcations
analogous to the bifurcations of steady states discussed above.
Analytical results generally involve the study of the Poincare
map of the system. Bifurcations of limit cycles occur when
one or more eigenvalues of the linearized map about the limit
cycle have magnitude equal to 1. One real eigenvalue equal
to +1 signifies a pitchfork bifurcation, one real eigenvalue
equal to — 1 signifies a period doubling bifurcation, and one
pair of imaginary eigenvalues with magnitude 1 signifies a
Hopf bifurcation of the limit cycle, commonly called a torus
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bifurcation. A thorough discussion of the various types of
bifurcations of both steady states and limit cycles is given in
Guckenheimer and Holmes.10

B. Continuation of Steady States
Continuation methods are a direct result of the Implicit

Function Theorem, which proves that the steady states of a
system are continuous functions of the parameters of the sys-
tem. The general technique is to fix all parameters of the
system but one, and compute the steady states of the system
as a function of this parameter. For a system of ordinary
differential equations of the form

x = (11)

where x is a vector representing the state of the system, and
IJL is a one-dimensional parameter, the implicit function theo-
rem proves that the steady states of the system are continuous
functions of the parameter JJL. Thus, solutions of the equation

(12)

are continuous functions of /JL. Continuation methods are nu-
merical techniques for calculating solutions of Eq. (12).

The technique used in this work is called a pseudo-arc-
length continuation technique and is from Doedel and Ker-
nevez.12 In this numerical technique the parameter /z is treated
as an unknown along with jc, and steady states are calculated
as functions of the arc length s along the curve of steady states.
If one steady state of the system is known, a new steady state
can be approximated by linear extrapolation from the know
steady state as shown in Fig. 1. The slope of the curve at the
known steady state can be determined by taking the derivative
of Eq. (12) with respect to s

/X + /X = o

where

d/x

(13)

(14)

and solving for x' and /x'. The change of x and ju, in one step
along the curve is limited by normalizing x' and /*/ with the
relation

(X'Y + (15)

The error between the approximate steady state and the true
steady state is then reduced to an acceptable level with New-
ton's method.

The above technique is computationally expensive as it re-
quires the matrix (£., /M) to be inverted to solve for x' and ///
at each step. If two steady states of Eq. (11), (jt0, fjL0) and (xl9
/x,), are known, an approximation to the above technique can

be used. This involves approximating Eq. (15) with the pseudo-
arc-length continuation equation of Keller13

(x - (16)

where As is the step size along the solution curve, and x[ and
//,/ are the values of x' and ju/ evaluated at (*,,/*,,). The values
of*/ and jit/ are approximated by (see Fig. 2)

x, = Oi ~
As As

Steady states of Eq. (11) are calculated by solving

/(x, /*) = 0

(x - *,K + (M - MI)M! - AJ = o

(17)

(18)

with the following algorithm: 1) approximate x{ and /*,/ at
the known steady state; 2) approximate the unknown steady
state, x = xl 4- Jc/As, IJL = IJLI + /A/As; and 3) use Newton's
method to reduce the error between the approximate and true
steady state to an acceptable level.

C. Continuation of Limit Cycles
To study combustion instabilities it is also necessary to com-

pute the limit cycles of a dynamical system. It is possible to
compute the limit cycles of a dynamical system by discretizing
the system in time to turn the computation of limit cycles into
a continuation of steady states. More specifically, periodic
orbits of Eq. (11) are given by solutions of

(19)jt(0) -

where T is the period of the limit cycle and time has been
scaled by the relation t —> tlr. Using the techniques discussed
above for steady states, ;u, will be treated as an unknown and
solutions will be calculated as functions of arc length s along
the curve of limit cycles. Since the period of the limit cycle T
is unknown, another equation is needed to make the system
solvable. The extra equation can be derived by noting that
two periodic orbits at subsequent values of arc length have
an arbitrary phase difference. This is true because if x(t) is a
limit cycle satisfying Eq. (19), then x(t + cr) is also a limit
cycle satisfying Eq. (19). Thus, if xk(t) is a known periodic
orbit, and x(t) is the subsequent unknown periodic orbit, the
arbitrary phase difference between the periodic orbits can be
eliminated by minimizing12

g((7) = £ \\x(t + <r) - (20)

Equating the derivative of Eq. (20) to zero and integrating
by parts gives the phase relation12

(21)x(t)xh(t) d/ = 0

which will be used in the continuation technique.

Fig. 1 Graphical representation of continuation method.
Fig. 2 Graphical representation of pseudo-arc-Iength continuation
equation.
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The pseudo-arc-length continuation equation used for cal-
culating the steady states of a dynamical system, Eq. (16),
can be generalized to calculate the limit cycles of a dynamical
system. Time dependence of the solution can be accounted
for by calculating the quantities represented by Eq. (16) over
one period of the limit cycle12

[x(t) - xk(t)]x'k(t) dt +

+ (T- r,K - As = 0 (22)

The complete system for calculating the (k + I)57 limit cycle
of Eq. (11) when the /cth limit cycle is known is

F[x(t)' ^ r]

x(t)x(t) dt

[x(t) - xk(t)]x'k(t) dt

pk)vf
k + (T - Tk)rk As

= 0 (23)

It is exceedingly difficult, if not impossible, to analytically
or computationally determine the functions x(t) that satisfy
these equations. One way of solving this system is to discretize
the periodic orbit x(t) in time. The particular technique of
Doedel and Kernevez12 is to divide the period 0 < t < 1, into
N intervals. In the y'th interval define the Lagrange basis pol-
ynomial

- n t - [tj + (/c/ra)Af]
(24)

and approximate the periodic orbit x(t) in the y'th interval by

(25)

The key characteristic of the basis polynomials is that

ajj[tj 4- (//ra)Afj = 1

'ajj[tj + (klni)M\ = 0, k

Thus

(26)

(27)

and uj+i/m represents the discrete approximation of the peri-
odic solution x(t), at time t = tj + (ilm) A/.

The method then consists of solving

=,o (28)

for / = 1, . . . , m and y = 1, . . . , N, where zy , are the
zeroes of the rath degree Legendre polynomial relative to the
appropriate subinterval. This technique is a generalization of
relaxation methods (Ref. 14, p. 609), in which ordinary dif-
ferential equations are approximated by finite difference
equations on a grid or mesh over the domain. The integral
equations in Eq. (23) are discretized by a composite quad-
rature formula obtained by approximate integration over each
subinterval of time (Ref. 14, p. 131). Gauss-Legendre quad-
ratures are used in this work with zy , as the collocation points.

The problem is then one of finding the steady states of a
system of ordinary differential equations where the new var-
iables are the uj+i/m. This is much easier than finding the
periodic orbits of Eq. (11), and one that can be solved with
the continuation algorithm discussed above, but this simpli-
fication comes at a price. Discretizing the system results in a
large increase in the dimension of the system to be solved. If
the dimension of the original system, Eq. (11), is n, and the
system is discretized into N time intervals with ra collocation
points in each subinterval, then the dimension of the discre-
tized system will then be Nmn + n + 2.

The stability of the periodic orbits is determined by cal-
culating the Floquet multipliers of the discretized system (Ref.
10, p. 24). Floquet multipliers of a periodic orbit are analo-
gous to the eigenvalues of a steady state. In the present work,
an approximation to the linearized Poincare map is used to
calculate the Floquet multipliers of the periodic orbit (Ref.
12, p. 44). Bifurcations can be found by searching for periodic
orbits that have one or more Floquet multipliers whose mag-
nitude is one.

III. Analysis of Steady States
The steady states of Eq. (4) are determined by setting the

time derivatives equal to zero (77,, = £„ = 0) and solving
the resulting algebraic equations. It is easy to see that the
zero solution, (17,,, £„) = (0, 0), is a steady state for Eq. (4),
no matter how many modes are included in the system. This
steady state corresponds to zero pressure perturbation in the
combustion chamber.

The stability of the zero steady state can be determined by
calculating the eigenvalues of the system obtained by linear-
izing Equation (4) about the origin. Linearizing Eq. (4) about
the origin gives

?"1 -L
o i

-(n2 - 2nd,,) 2a,, (29)

Note that the acoustic modes represented by Eq. (4) are lin-
early uncoupled, so the linearized system for an TV-mode ap-
proximation will consist of N pairs of linear, uncoupled equa-
tions. Therefore, it is possible to determine the eigenvalues
of the linearized system independent of the number of modes
included in the truncated system. The eigenvalues of the nth
mode are

- (20» - (ajn)2 (30)

If an is zero, then the eigenvalues of the nth mode are pure
imaginary and a Hopf bifurcation occurs. This leads to the
existence of limit cycles when an is positive for one or more
modes. These limit cycles represent time varying amplitudes
of the acoustic modes and are physically realized as combus-
tion instabilities.

Jahnke15 has shown that Eq. (4) has steady states besides
the steady state at the origin. A pair of nonzero steady states
can be determined analytically for the two-mode approxi-
mation, but they are physically unrealistic as they are greater
than one. In particular, for y = 1.4, the steady states are
given by (17^ r/2) = (±6.3, 1.4). These steady states are
unstable so they will not affect the dynamics of the system
near the origin.

Steady states other than the zero steady state were also
found for the four- and six-mode approximations. These steady
states were found using a continuation algorithm because it
was impossible to determine the steady states analytically.
Four nonzero steady states were found for the four-mode
approximation. All these steady states were physically un-
realistic and linearly unstable, and so they will not affect the
dynamics of the system near the origin. Six nonzero steady
states were found for the six-mode approximation; these were
also physically unrealistic and linearly unstable.
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IV. Results for a First-Mode Instability
A. Two-Mode Time-Averaged Results

The two-mode time-averaged equations in polar coordi-
nates can be obtained from Eq. (10) to give the system of
first-order ordinary differential equations

rl = — Kr{r2 cos i/>2

r> = a2r2 + Kr\ cos ife

fc = (02 - 200 + K[2r2 - (rf/r2)]sin (31)

Paparizos and Culick9 derived an equivalent form of the two-
mode time-averaged equations and went on to show that sta-
ble steady states of the two-mode time-averaged equations
exist only if OL^OL^ < -2 and that the steady states are given
by

r2 =

where

= tan-'(-j8)

02 ~ 20,

(32)

6t2

It is important to note that the steady state of Eq. (31) does
not necessarily represent a steady state of the two-mode time-
averaged equations. The condition that i/r2 equals zero means
that 2</>, - </>2 equals zero, but not necessarily that fa and
<j>2 are individually equal to zero. Using the steady-state val-
ues of r, and r2 it is easy to show that

2a, -t- d2

= -2 (33)

so the steady states of Eq. (31) represent limit cycles of the
two-mode time-averaged equations. The solution of the two-
mode time-averaged approximation to the nonlinear longi-
tudinal acoustics in a combustion chamber is thus given by

/( y V -

(34)

where

- -2

13
02 - 26,
2al +

2<Aio ~ *2o = tan-'(-j8)

Note that the time dependence of </>, and
frequency of the limit cycle.

changes the

1.0

0.5

o.o-1.0

1.0

-0.5 0.0

0.5

0.0
-1.0 -0.5

Oti/<X2

0.0

Fig. 3 Maximum amplitude of acoustic modes in limit cycle for two-
mode time-averaged approximation; —— stable, --- unstable.

The maximum amplitudes of 17,(f) and r]2(t) in the limit
cycle are shown in Fig. 3 as functions of aja2. Figure 3 shows
that a limit cycle exists when aja2 is negative, but is stable
only if al/a2 is less than —{. It is important to note that the
amplitude of the limit cycle goes to infinity as a,/as ap-
proaches -i, which coincides with the stability boundary of
the limit cycle. Since the original equations representing the
time evolution of the amplitudes of the acoustic modes were
derived using a perturbation analysis, only limit cycles with
small amplitudes are valid approximations to solutions of the
complete fluid dynamic equations. Also, time-averaging is
theoretically valid only if the amplitudes in the limit cycle
remain small. Thus, one would expect that the limit cycles
predicted by the two-mode time-averaged equations are not
valid for values of aja2 near — i. It is particularly important
to take this into account when considering the validity of the
stability boundaries predicted by the two-mode time-averaged
equations.

B. Two-Mode Continuation Results
In order to apply time-averaging, a sinusoidal time de-

pendence is explicitly specified for each acoustic mode. This
approximation is valid near the Hopf bifurcation point (i.e.,
for «! « 1), but as o^ becomes larger the approximation
becomes less valid. Continuation methods make it possible
to compute the limit cycles of Eq. (4) as a function of one of
the parameters of the system without resorting to time-av-
eraging. Limit cycles of Eq. (4) exist as a result of the Hopf
bifurcation that occurs at a{ equal to zero. Figure 4 shows
the results obtained by applying the continuation method to
the two-mode approximation. The maximum amplitude of the
pressure fluctuation at the head of the combustion chamber
is used as a measure of the validity of the perturbation equa-
tions. Results in which the pressure perturbation is greater
than one-half of the mean chamber pressure are probably not
valid. The stability of the limit cycle is also indicated in Fig.
4; stable limit cycles are represented by solid lines, whereas
unstable limit cycles are represented by dashed lines.

Results from the time-averaged equations are also plotted
in Fig. 4 to show the differences between the continuation
results and the results obtained by time-averaging. Results
from the two methods are essentially the same for values of
at less than 120. Note that the change in the period of the
limit cycle as a function of a, is poorly approximated by the
time-averaged equations.

The limit cycle behaviors predicted by the continuation
method and the time-averaged equations are significantly dif-
ferent for values of a, greater than 120. The continuation
results show a turning point bifurcation at a, equal to 131,
beyond which no limit cycle will exist. The limit cycle also
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Fig. 4 Maximum amplitude of acoustic modes in limit cycle for two-
mode approximation; —— stable, --- unstable.
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Fig. 5 Maximum amplitude of acoustic modes in limit cycle for four-
mode approximation; —— stable, --- unstable.

becomes asymmetric near the turning point. This is particu-
larly evident in the plot of the pressure fluctuation at the head
of the combustion chamber. The limit cycle behavior pre-
dicted by the time-averaged equations remains symmetric by
definition. Also note that the amplitude of the pressure per-
turbation at the turning point is close to one-half the mean
chamber pressure so the perturbation expansion used to ob-
tain the acoustic equations may not be valid.

C. Four-Mode Continuation Results
Figure 5 shows the limit cycle behavior of the four-mode

approximation as a function of o^. The results for the cor-
responding two-mode approximation are shown in Fig. 4. The
most obvious difference between the two sets of results is that
the stability boundary that occurred at the turning point in
the two-mode approximation does not exist for the four-mode
approximation.

In hindsight, it is not entirely surprising that the stability
boundary determined by the two-mode approximation is sen-
sitive to the number of acoustic modes included in the trun-
cated system. The two-mode approximation, in which energy
is produced by the linearly unstable first mode 17 1? then trans-
ported to the stable second -.mode r\2, -where ; it is subsequently
dissipated is a gross approximation to the energy cascade that

0.3

o.o

-0.3
0.0 3.2 6.4

0.1

0.0

-0.1
0.0 3.2 6.4

Fig. 6 Time-dependent amplitudes of acoustic modes in limit cycle
obtained with continuation method for four-mode approximation, a,
= 100.

occurs in fluid dynamical systems. For slightly unstable sys-
tems (i.e., al is small) the two-mode approximation is suffi-
cient, as can be seen by comparing Figs. 4 and 5. For more
unstable systems (larger values of a{) it becomes difficult for
the second mode to dissipate the energy produced by the first
mode. At some point it becomes impossible for the second
mode to dissipate all the energy produced by the first mode
resulting in the turning point bifurcation, beyond which no
limit cycles exist.

In the four-mode approximation, the third and fourth acoustic
modes are also able to dissipate energy, resulting in a system
that contains stable limit cycles for larger values of a,. When
al is near 131, the value at which the turning point occurs in
the two-mode approximation, the amplitudes of the third and
fourth acoustic modes are about 10% of the mean chamber
pressure. This is smaller than the amplitude of the second
acoustic mode, but clearly significant to the energy balance
in the limit cycle. Also note that the linear damping param-
eters of the higher-frequency modes are generally larger than
the linear damping parameters of the lower-frequency modes
(see Table 1). Therefore, as typical of fluid mechanical sys-
tems, higher frequency modes are more efficient at dissipating
energy than lower frequency modes.

Figure 6 shows the time-dependent amplitudes of the first
two acoustic modes for a, equal to 100. The amplitudes seem
to have sinusoidal time dependence as was assumed in the
time-averaging. It is interesting to note that the time-de-
pendent amplitude of the second acoustic mode has a DC
offset from 0. This seems to be the case for all values of a,
with the offset increasing for increasing values of a,. The
maximum amplitude of the negative pressure fluctuation be-
comes larger than 1 when at reaches 300, which is physically
impossible. This underscores the importance of monitoring
the amplitude of the pressure fluctuation to determine whether
the results are physically realistic.

D. Six-Mode Continuation Results
In view of the major differences between the two- and four-

mode approximations, it seems prudent to determine the limit
cycle behavior of the six-mode approximation to determine
whether or not there are differences between the limit cycle
behavior of the four- and six-mode approximations. Figure 7
shows the maximum time-dependent amplitudes of the first
two acoustic modes as functions of a^ for the six-mode ap-
proximation. At first,glance, the results for the six-mode ap-
proximation seem sihiilar to the results for the four-mode
approximation; Aliniit cycle exists and is stable for the entire
range of values of OLt. On closer?inspection however, one sees
that the magnitudes of the time-dependent amplitudes are
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Fig. 7 Maximum amplitude of acoustic modes in limit cycle for six-
mode approximation; —— stable, --- unstable.

smaller for the six-mode approximation than for the four-
mode approximation for values of a, larger than 160.

This occurs because when more modes are included in the
truncated system more modes are available to dissipate en-
ergy. When an insufficient number of modes are included in
the approximation each mode must dissipate the amount of
energy it naturally would, plus some of the energy that would
be dissipated by higher-frequency modes. Thus, the required
number of acoustic modes to include in the approximate sys-
tem depends on the degree of instability of the system (i.e.,
the value of a,). For larger values of a, it is necessary to
include more modes in the approximation.

V. Results for a Second-Mode Instability
A. Two-Mode Approximation

The solution of the two-mode time-averaged equations is
the same for a first- or second-mode instability, so the solution
for the two-mode time-averaged system with an unstable sec-
ond mode is given by Eq. (34). Stability boundaries for the
two cases are different however. For the second-mode insta-
bility the solution is stable when9

For our system, where the only nonlinear terms are asso-
ciated with second-order gasdynamic nonlinearities, the flow
of energy is from low-frequency modes to high-frequency
modes. In the present case the second mode is unstable, and
so in the two-mode approximation energy is forced to flow
from a higher frequency mode to a lower frequency mode.
Thus, it is unlikely that the two-mode approximation is a valid
model of the fluid mechanics when the second mode is un-
stable. The insufficiencies of the two-mode approximation can
be seen more clearly by looking at the asymptotic expansion
of the two-mode approximation. Using Eq. (4) it can be shown
that the asymptotic solution of the two-mode approximation
for 0 < as « 1 is

U.y o
, (l/fl2)sin £l2t + cosfV

L — f!2 sin £l2t + cos £l2t
(35)

where

Only the second mode is linearly excited, as one would expect,
because the acoustic modes are linearly uncoupled. Thus, if
the second mode is to excite the first mode it must do so
through the nonlinear terms. An examination of the two-
mode approximation shows that the first mode is nonlinearly
coupled to the second mode through the terms f t^2 and 17,173.
With this form of coupling it is not possible for the second
mode to excite the first mode if the first mode is initially
unexcited.

Thus, modes of order greater than two must be included
in the analysis of the second mode instability. Expanding Eq.
(4) for a four-mode approximation one can show that non-
linear terms of the form 77? and & transfer energy from the
second mode to the fourth mode when only the second mode
is excited. Thus, the natural mode of energy transfer for the
second-mode instability is from the unstable second mode to
the stable fourth mode.

B. Four-Mode Time-Averaged Results
The four-mode time-averaged equations are determined

with Eq. (6). An examination of the four-mode time-averaged
equations shows that if the first, third, and fourth acoustic
modes are initially unexcited while the second acoustic mode
is excited, energy will be transported from the second mode
to the fourth mode, but no energy will be transported from
the second mode to either the first mode or the third mode.
Further examination reveals that if the second and fourth
modes are excited but the first and third modes are initially
unexcited, then the first and third modes will remain unexcited
for all time.

Since the odd acoustic modes can remain unexcited when
the even acoustic modes are excited, one can look for steady
states for which A^ B^ A3, and B3 are identically zero. The
four-mode time-averaged system then reduces to a two-mode
system that has the same form as the two-mode time-averaged
system composed of the first and second acoustic modes. The
solution of the time-averaged four-mode approximation is

i?3(0 = 0

(36)

where

(0 = -

i / N
04(0 =

02

04

n2 =

a204 + a40^ — ~2a2 + a4

.2a2 + a4

2a2

2020 - 040 = tan-'(-/3)

C. Four-Mode Continuation Results
Results for the four-mode approximation are obtained by

expanding Eq. (4) and using the continuation method to de-
termine the limit cycles of the resulting eighth-order system.
A branch of limit cycles arises from the Hopf bifurcation point
that occurs when a2 is zero. Figure 8 shows the results of the
continuation method along with the results from the time-
averaged equations.

Figure 8 shows that the time-dependent amplitudes of the
first and third modes are zero in the limit cycles predicted by
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Fig. 8 Maximum amplitude of acoustic modes in limit cycle for four-
mode approximation; —— stable, --- unstable.

the continuation method. This matches the solution of the
time-averaged equations. The maximum amplitudes of the
second and fourth acoustic modes in the limit cycle are es-
sentially the same for the time-averaged and non-time-aver-
aged systems when a2 is less than 75. For values of a2 larger
than 75, the limit cycles predicted by the two methods start
to diverge. The maximum amplitudes of j]2 and 174 in the limit
cycle predicted by the continuation method are larger than
the maximum amplitudes of r]2 and r/4 predicted by time-
averaging. Stability boundaries predicted by the two methods
are substantially different. The stability boundary predicted
by the continuation method occurs at a2 equal to 109, whereas
time-averaging predicts a stability boundary at a2 equal to
140.

D. Six-Mode Continuation Results
Figure 9 shows the maximum amplitudes of the acoustic

modes in the limit cycle as functions of a2 for the six-mode
approximation. For values of a2 less than 84, the limit cycles
for the four- and six-mode approximations are similar. The
odd modes remain unexcited for both systems, whereas the
even modes increase in amplitude as a2 increases. For values
of a2 greater than 84, the limit cycles of the four- and six-
mode approximation are qualitatively different. A pitchfork
bifurcation of the limit cycles of the 6-mode approximation
occurs at a value of a2 of 84. This pitchfork bifurcation results
in the formation of a stable branch of limit cycles on which
the odd modes are excited. In the 4-mode approximation the
odd modes remain unexcited for all values of a2 studied. This
should serve as a warning about making a priori assumptions
about the solutions of nonlinear dynamical systems. If the odd
modes had been assumed zero for all limit cycles in the six
mode continuation results, the pitchfork bifurcation would
not have been found.

As a result of the pitchfork bifurcation, two separate branches
of limit cycles exist for values of a2 greater than 84. On what
will be called the primary branch, the odd modes have zero
amplitude in the limit cycle. The limit cycles on this branch
are stable up to the pitchfork bifurcation that occurs at a2
equal to 84, and unstable for values of a2 larger than 84. For
the branch of limit cycles that occur as a result of the pitchfork
bifurcation, here called the secondary branch, the odd modes
have nonzero amplitudes. Since the odd modes are linearly
stable, and thus able to dissipate energy when they have non-
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Fig. 9 Maximum amplitude of acoustic modes in limit cycle for six-
mode approximation; —— stable, --- unstable, •- Torus bifurcation.
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Fig. 10 Time simulation for six-mode approximation with a2 = 160.

zero amplitudes, the amplitudes of the even modes are smaller
on the secondary branch than on the primary branch.

The secondary branch is linearly stable for values of a2 from
84 to 155. A torus bifurcation occurs on the secondary branch
at a value of a2 of 155 causing the limit cycles to be unstable
when a2 is greater than 155. As a result of the torus bifur-
cation, a branch of toroidal solutions will appear for values
of a2 greater than 155. Figure 10 shows a time simulation for
a2 equal to 160. Multiple frequencies are clearly evident in
the time simulation. The high-frequency content corresponds
to the acoustic frequency of the combustion chamber, while
the low-frequency content is a result of the torus bifurcation.
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Fig. 11 Poincare map of the time simulation of the six-mode ap-
proximation with a2 = 160.

It is difficult to assign any physical meaning to the low-fre-
quency oscillations as the toroidal motion is highly nonlinear.
Figure 11 shows a Poincare map of the time simulation of Fig.
10. The closed orbit in Fig. 11 clearly shows that the motion
is toroidal for a2 equal to 160.

VI. Conclusions
One major result of this analysis has been to show that for

a first-mode instability the stability boundaries predicted with
the two-mode time-averaged equations are artifacts of the
two-mode approximation. A stability boundary is also found
when the continuation technique is used to calculate the limit
cycles of the two-mode nontime-averaged equations, so the
existence of the stability boundary is characteristic of the two-
mode approximation and is not the result of time-averaging.

No stability boundary is found for the four- or six-mode
continuation results for the case of an unstable first mode. A
limit cycle exists and is stable for all values of a, examined
in this study. There is a significant difference in the magnitude
of the time-dependent amplitudes of the acoustic modes in
the limit cycles for the four- and six-mode approximations for
large values of a{. In the neighborhood of the Hopf bifur-
cation point («! = 0) the results of the various approximations
are almost identical and they remain relatively close for values
of al less than 100. Results for the four- and six-mode ap-
proximations diverge rapidly as a{ becomes larger than 160
as more modes are necessary to dissipate the additional energy
produced by the more unstable first mode.

In the case of the second-mode instability, it has been found
that the two-mode approximation consisting of the first and
second acoustic modes does not allow for the natural transfer
of energy from low-frequency to high-frequency modes, and
it is not possible for the second mode to excite the first mode
if the first mode is initially unexcited. An examination of the
equations representing the time evolution of the time-de-
pendent amplitudes of the acoustic modes shows that when
the second acoustic mode is unstable, nonlinear energy trans-
fer will occur from the unstable second mode to the stable
fourth mode. There is no mechanism for the second or fourth
acoustic modes to excite the first and third acoustic modes if
the first and third acoustic modes are initially unexcited.

Results for the six-mode approximation with a second-mode
instability predict limit cycle behavior not seen before. A

pitchfork bifurcation of the primary branch occurs for a2 equal
to 84 and results in a new branch of limit cycles that have
odd modes with nonzero amplitudes in the limit cycle. Thus,
for a2 greater than 84 it is possible for energy to flow from
the even modes to the odd modes. This new branch of limit
cycles contains a torus bifurcation resulting in quasiperiodic
motions. Similar to the case of the first-mode instability, the
number of modes required in an analysis of the second-mode
instability depends on the degree of instability of the system.
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