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A solution-adaptive method for the time-accurate analysis of two-dimensional flows in multistage turboma-
chinery is presented. The method employs a hybrid structured-unstructured zonal grid topology in conjunction
with appropriate modeling equations and solution techniques in each zone, thus combining the advantages of
both structured and unstructured grid methods. The viscous flow region in the immediate vicinity of the airfoils
is resolved on structured O-type grids, while the rest of the domain is discretized using an unstructured mesh
of triangular cells. In the inner regions, the Navier-Stokes equations are solved using an implicit, third-order
accurate, upwind-biased scheme. The use of both central difference and upwind schemes is explored for the
solution of the Euler equations in the outer regions. An efficient and robust grid adaptation strategy, including
both grid refinement and coarsening capabilities, is developed for the unstructured grid regions. Methodologies
for the accurate, conservative transfer of information at the interface between the structured and unstructured
domains, as well as that between two unstructured grids in relative motion, are also developed. For generality,
three-dimensional effects of stream-tube contraction are modeled. The numerical methodology is presented in
detail in the present article (Part I). Results obtained using this method and comparisons of these results with
experimental data and earlier structured-grid based methods are presented in a companion article (Part II).

Introduction

T HE numerical simulation of turbomachinery fluid dy-
namics is a challenging problem that involves unsteady

flow phenomena in complex geometries. The problem has
received the attention of computational fluid dynamics re-
searchers ever since the emergence of the discipline, and sev-
eral techniques have been applied towards its solution. Ref-
erences 1-10 represent a brief, but by no means exhaustive,
list of relevant work in unsteady turbomachinery flow pre-
diction. More general and comprehensive reviews of com-
putational methods for turbomachinery flow analysis are also
available.11

The relative motion between the stationary and rotating
rows of a turbomachine makes domain discretization using a
single grid rather impractical. Most methods and associated
computer codes in use today employ structured grids in com-
bination with some type of zonal strategy for computing such
flows.4-10-12-13 The zonal strategy provides a convenient way
to treat complex flow domains. The grids in the individual
regions have only to conform to the local geometry and can
thus be generated with relative ease. Zonal methods also offer
flexibility in selecting the optimal governing equations and
solution algorithms in each domain, based on the local flow
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characteristics. However, the division of the flow domain into
multiple zones has some drawbacks. Artificial zone bound-
aries are introduced where appropriate boundary conditions
are required to ensure accurate information exchange be-
tween the zones. The stability of the overall algorithm requires
proper overlapping and patching of grids, and calls for an
appreciable degree of user judgment and experience during
the initial grid generation stage. In addition, the large overlap
between the inner and outer grids that is sometimes neces-
sitated is computationally inefficient, and detracts from the
ability to refine grids elsewhere.

Unstructured grid-based methods have gained popularity
in recent years as an alternative approach for analyzing flows
in complex geometries. These methods offer two main ad-
vantages over traditional structured grid-based approaches.
First, by not requiring the grids to be logically rectangular,
they offer considerable flexibility in discretizing complex do-
mains without resorting to large-scale zoning. General-pur-
pose grid generation techniques can be used and the process
can be automated easily. Second, unstructured grids offer
control of grid density and stretching in a more flexible man-
ner and permit optimal use of available grid points. This ca-
pability becomes even more powerful when used in a dynamic,
adaptive setting to resolve flow features evolving in time and
space. Unstructured-grid based methods are gaining popu-
larity because of such advantages, but there are several issues
that still need to be resolved. These methods usually employ
explicit time-stepping and have been used quite successfully
for solutions of the Euler equations.14 However, the small
grid spacings that are required to resolve boundary-layer fea-
tures result in rather severe time-step restrictions when ex-
plicit schemes are used for viscous calculations. Progress has
been reported recently15-16 on the development of Navier-
Stokes and implicit methods for unstructured grids, but it is
somewhat unclear whether these techniques will be compet-
itive with structured-grid based methods. Other concerns in-
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elude the effect on solution accuracy of the highly stretched
grids typically used in viscous regions, and the development
of higher-order accurate schemes on unstructured grids. Im-
plementation of some simple turbulence models and surface
boundary condition procedures also becomes complicated for
unstructured grids where the grid lines are not orthogonal to
the body surfaces.

The relative ease with which solution adaptive capabilities
can be built into the framework of unstructured grids in com-
parison to structured grids makes the former particularly at-
tractive for unsteady turbomachinery applications. In such
applications, accurate treatment of the wakes is important
since the unsteady flowfield can depend to a large extent on
the interaction of these wakes with downstream airfoils. Nu-
merical diffusion inherent in most computational procedures
can cause the wakes to be distorted. One remedy for reducing
this effect is to adaptively refine the grid in the vicinity of the
wakes; however, this is somewhat difficult to achieve in a
structured grid setting. In zonal methods, the wakes are sub-
jected to additional numerical diffusion and distortion as they
convect through a series of grids with differing topologies.
These problems become even more critical in multistage con-
figurations where the interactions are potentially more com-
plex and the wakes traverse through several zones.

The present method combines the advantages of both un-
structured and structured grid methodologies in a hybrid pro-
cedure for the analysis of unsteady turbomachinery flows. The
method is implemented by generalizing the zonal framework
of Ref. 10 to include both structured and unstructured grid
domains. The region in the immediate vicinity of the airfoils
(inner region) is discretized using structured grids, while the
rest of the domain (outer region) is discretized using an un-
structured triangular grid. In the viscous inner regions, the
Navier-Stokes equations are solved using an implicit, third-
order accurate, upwind-biased scheme. In the inviscid outer
region, Euler equations are solved using either a central dif-
ference scheme or an explicit upwind scheme that incorpo-
rates a linear reconstruction procedure. The solution in the
outer unstructured region is advanced in time explicitly using
the same time-step values as for the structured regions which
are time-advanced in an implicit manner. An efficient and
robust grid adaptation strategy with both grid refinement and
coarsening capabilities is also used for the unstructured grid.
A similar hybrid-grid approach for turbomachinery compu-
tations has been reported recently in Ref. 13. The present
method, in addition to its solution-adaptive capability, is ca-
pable of treating multistage turbomachinery configurations.

The following sections describe the domain decomposition,
grid generation, inner and outer grid solution procedures, grid
adaptation strategy, and the various boundary conditions used.
Computed results and comparisons of these results with ex-
perimental data and earlier structured-grid based methods are
presented in a companion article (Part II).

Domain Decomposition and Grid Generation
The domain decomposition strategy adopted is illustrated

in Fig. 1 for a single-stage axial turbine configuration. The
figure shows a row of stator airfoils adjacent to a row of rotor
airfoils. The inner zones occupy the immediate vicinity of the
airfoils. There is one outer zone for each airfoil row in which
all the inner zones corresponding to that airfoil row are
embedded. Structured grids are used in the inner zones, while
unstructured grids are used in the outer zones. Multistage
configurations with several adjacent rows of airfoils are ac-
commodated within the same framework.

In the inner zones O-type grids are used. These are gen-
erated easily since the location of outer boundary of the grid
is not a major constraint. This outer boundary is located at
a specified distance normal to the airfoil surface. The re-
mainder of the geometrically complex domain is discretized
using an unstructured triangular mesh. The outer boundaries
of the inner grids form the inner boundaries of the outer

Inner Structured
Grid Zones

Flow —
Direction

Outer Unstructured
Grid Zone

Direction of
Rotor Motion

Fig. 1 Typical zonal decomposition.

domain. Unlike the approach of Ref. 10, this outer region for
each airfoil row is not discretized into identical grids, but is
retained as one multiply-connected domain with several "holes."
The distribution of grid points on the inner hole boundaries
is already known from the inner grids; on all other boundaries
it is prescribed in accordance with the expected flow features
and the desired clustering. The domain is then triangulated
using an advancing-front technique that produces a smooth
grid with point clustering being controlled by the specified
boundary points. The technique allows for control of the mag-
nitude as well as directionality of the stretching. Inlet and exit
boundary placement is accomplished by extending the domain
for the first and last airfoil rows by a few chord lengths up-
stream and downstream, respectively. The boundary between
adjacent airfoil rows is located midway between the two rows.

Inner Grid Solution Procedure
The Navier-Stokes equations, including the stream-tube

contraction terms,17 form the set of governing equations in
the inner regions. The thin-layer approximation is introduced
and the resulting equations in generalized coordinates are
given as

dr (1)

where

dx dy

dx dy dx dy

where [(d&dt), (dg/dx), (dg/dy)] and [(drj/dt), (dy/dx), (dr/%)]
are the metrics, and / the Jacobian of the transformation from
Cartesian to body fitting coordinates, such that the £ direction
wraps around the airfoil and the 77 direction is normal to the
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surface. Re and Pr denote the nondimensional parameters
Reynolds number and Prandtl number, respectively. Q is the
vector of the conserved flow variables, and E and F are the
inviscid fluxes. In terms of the primitive variables they can
be written as

Q =
" P
pu
pv
e

¥7» __

pu
pu2 + p

puv
m(e + p)u_

pv
puv

pv2 + p (2)

where Ev and Fv are the viscous fluxes

with

Txx =

du 2 idu dv 2 udh
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The inclusion of stream-tube contraction terms modifies the
viscous stress terms as shown in square brackets above, and
also introduces the source term S given by

c _ Id*
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dx
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where r = (iAr)172 and

(5)

M= &

and A, V, and 8 are the forward, backward, and central dif-
ference operators, respectively. The residual Rp is given by

Rp = 3(2" - 4(5"— ——— -k2Ar
dfp , dFp

—— - Re~[ — - - Sp

The temporal integration scheme employs a Newton-type
iterative process. In Eq. (4), Qp is an approximation to the
next time-step value, Qn + l. At the beginning of the iteration
process, p = 0, Qp = Qn, and at convergence, Qp = Q"+l.
In this manner, the linearization and factorization errors can
be driven to zero at each time step. Typically, three to four
such iterations are sufficient to reduce the residuals by two
orders of magnitude.

The inviscid flux terms of the residual are discretized using
a third-order accurate, upwind-biased scheme. It will suffice
to consider the term

= (Ei+U2 - £,_1/2)

where

(6)

The fluxes AZ^ can be calculated in many different ways,
and in the present study they are evaluated based on Roe's
scheme18

where the intermediate state Qi+V2 at which the Jacobian A
is evaluated is obtained by density weighted averaging as fol-
lows:

M/Vp/ + M/+iVp/+i

u dh 2 idu u dh dv

where

where h is the normalized area of the stream tube and is
assumed to be a known function of x. Note that for constant
h, the above equations reduce to the standard two-dimen-
sional thin-layer Navier-Stokes equations.

The governing equations are discretized to give the follow-
ing factored, iterative, implicit algorithm:

(Q'jp+ - (4)

+ VP/+I
and the metric terms are averaged as

The viscous flux, (dfvldrj) is evaluated using central differ-
ences as

dF \
=
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where

Gy+ = i(C/+i + Qj)

i/2 = QJ+i ~ Qj

Outer Grid Solution Procedure
The Euler equations chosen as the governing equations in

the outer region are given as

dQ dE df
——— + ——— + ——— = S,dr 8£ dri

where 5, represents the inviscid terms of Eq. (3), and (£, 77)
are the Cartesian coordinates fixed to the body. The equations
are spatially discretized using a finite volume technique. In-
tegrating the Euler equations over a control volume ft yields

• f ff f i d f d i j + f (Edr,-fd{)=ll S,dfd7, (7)
dT J JH JMl J •/«

Various spatial discretization schemes are distinguished by
the choice of the control volume and the manner in which
the boundary integral is evaluated. The spatial discretization
results in a set of coupled, ordinary differential equations that
are advanced in time using a second-order accurate, four-step
Runge-Kutta scheme. The same time-step values as in the
inner zones are used. Two different spatial discretization
schemes were used in the current work as discussed below.

Central Difference Scheme
The first method is a "vertex-based" scheme in which the

polygon surrounding each grid point is chosen as the control
volume ft (see Fig. 2). The boundary integral in Eq. (7) is
approximated by adding together the contribution of each side
of the control volume. The flux along each edge can be eval-
uated by either averaging the endpoint Q first, or by averaging
the endpoint fluxes. The latter approach is used here. For
example, the contribution of the edge / connecting the points
A and B in Fig. 2 to the integral at point C is given by

where A£ and AT/ are the increments in the £ and T/ directions,
respectively, along the edge /. The edge i also contributes
the same flux term, with a negative sign, to the integral at
point D.

This procedure is analogous to a central difference scheme
on a structured grid, and as with any central differenced scheme,
artificial dissipation is required to stabilize the solution. A
combination of fourth and second differences of the conserved

Fig. 3 Control volume for the upwind scheme.

variables is added to the numerical fluxes, following the pro-
cedure of Mavriplis.14

Upwind Scheme
Upwind schemes can be constructed on unstructured grids

by considering a control volume made up from a dual grid.
Dual grids can be constructed geometrically by connecting
the centroids or circumcenters of the triangles, but not all of
them are good candidates for use as control volumes. In the
present study, the control volume around a point is made up
of line segments connecting the centroids of the triangles to
the midpoints of the edges emanating from the point, as shown
in Fig. 3. Therefore, each edge of the original grid has two
corresponding edges on the dual grid, the contribution of
which to the flux integral is evaluated using the Roe flux
scheme. For example, the edge /, directed from point A to B
in Fig. 3, has two corresponding dual edges, /' and /". The
contribution of a dual edge to the integral at point A is given
by EAs, where E is defined by Eq. (6) and represents the flux
normal to the edge, and As is the length of the edge. QA and
QB are the left and right states used in evaluation of the
Jacobian A [Eq. (5)], and the metric terms are

AT/
As

-Ag
As

where A£ and AT/ are £ and T/ increments along the edge.
The scheme outlined above is spatially first-order accurate.

To improve accuracy, a linear reconstruction procedure, pro-
posed in Refs. 19 and 20, is used whereby instead of assuming
QA and QB as the left and right states for use in the Roe flux
evaluation, <g+ and Q~ are obtained as

Q = QA +

Q+ = QB +

where rl and r2 are vectors directed from points A and B,
respectively, to the midpoint of the dual edge. The compo-
nents of the gradient of Q are evaluated using the Gauss
divergence theorem

Fig. 2 Control volume for the central difference scheme.

= - f "A JMIC
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where (lc is the control volume used for the central difference
scheme, as shown in Fig. 2. The reconstruction process can
create local extrema, and it is usually necessary to limit the
gradients Q€ and Q^ in order to ensure monotonicity of the
solution.

The upwind scheme is naturally dissipative and requires no
additional artificial dissipation for stability. Also, like its struc-
tured grid counterparts, it results in lesser smearing of flow
discontinuities. The central difference scheme, on the other
hand, has the advantage of being very easy to implement and
requires lesser number of operations at each time step. An-
other reason for preferring the upwind scheme in the present
study is the fact that it is identical to the flux evaluation
procedure used in the inner, structured grids. Thus, flux con-
servation between the different zones can be ensured, at least
to the order of accuracy used in the outer grids.

Grid Adaptation Strategy
To be viable for unsteady flow computations, solution-

adaptive grid techniques must satisfy several additional re-
quirements beyond those required for steady computations.
First, the adaptation algorithm must be very efficient, since
it will be used repeatedly. This is not a major concern in
steady computations where adaptation is done only a few
times during the entire solution procedure. Second, the ad-
aptation strategy and attendant error indicators should be
automatic and robust. Since the grid is adapted every few
time steps, user intervention is not feasible whenever the grid
changes. Third, the adaptation method must incorporate a
coarsening capability that allows point deletion to prevent an
unbounded increase in the total number of points. Finally,
the adaptation technique should incorporate some means of
detecting unacceptable cells and restoring grid quality, since
repeated refinement and coarsening tend to degrade the qual-
ity of the grid.

Grid adaptation algorithms currently in use can be classified
into three general categories: 1) point relocation, 2) remesh-
ing, and 3) h refinement. In point relocation methods the
total number of grid points is kept constant, but their location
is varied to achieve the desired clustering in specific regions.
These methods are very easy to implement and are useful
when grid adaptation is used to relocate interior points fol-
lowing any changes in the boundaries,21 or in cases where only
a mild clustering is sufficient.22 This approach does have draw-
backs in situations where excessive gradients develop because
additional points are not introduced. Grid quality also dete-
riorates easily if there is excessive point motion. In remeshing
methods, the entire domain is (or portions of it are) fully
remeshed at each adaptation. The drawbacks of this approach
are that complete or even partial remeshing can be very ex-
pensive, and that the general spatial interpolation of the
solution from the original to the adapted grid can lead to
numerical errors for transient or periodic problems. In the h-
refinement approach, points are added and/or deleted from
the grid according to specified criteria, usually by subdivision
of some element (edge, face, or volume) of the original grid.
Interpolations on the new grids can be made conservative and
do not require global searches. The degree of refinement can
be controlled precisely and the procedure is quite robust. A
drawback of this technique is that the transition from refined-
to coarse-grid regions is not very smooth, arid the change in
cell areas can be rather large.

The grid adaptation method used in the present study is
based primarily on h refinement. However, some additional
steps are incorporated to improve the quality of the adaptive
grids. These steps are described below.

Grid Refinement
Refinement is effected by subdividing those edges of cur-

rent grids for which the indicator function (computed as an
average of the indicator function values at the two endpoints)
exceeds a specified tolerance. This approach is chosen over

other alternatives (such as point addition at the centroid of
an existing triangle) because it can be accomplished using only
the edge data structure. Also, since the new points are added
midway between two existing points, the interpolation of the
flow variables is straightforward.

Grid Coarsening
Point removal from a grid is more complicated than point

addition. Coarsening cannot be based simply on removing all
the points where the error indicator is below a specified tol-
erance, since this is likely to result in removal of all points
from smooth regions. The procedure used here is as follows.
A deletion flag is defined at each grid point and set to 0,
except at certain points which must be protected from deletion
(such as some boundary points which define the ends of the
domain etc.) where the flag is set to 1. All the points are then
successively visited, and if both the error indicator is below
tolerance and the flag is 0, that particular point is marked for
deletion by setting its flag to — 1. Each time a point is marked
for deletion, all its neighbors are forcibly protected by setting
their flags to 1. This ensures that the grid refinement is grad-
ual, but does not necessarily delete the points with the lowest
indicator values. Somewhat better results are obtained if the
points are visited in the order of their error indicator values
rather than according to their indices in the point lists. An
alternative strategy, which can be used if the original grid is
deemed to be sufficiently coarse in the smooth regions of the
flow, is to delete only the points that were introduced as a
result of refinement. This approach is faster, but does not
make optimum use of adaptation capabilities since the original
set of grid points is always preserved.

Retriangulation
An important consideration during grid adaptation is the

triangulation of the new set of grid points. One possible means
of accomplishing this would be to generate the new list of grid
points by adding and deleting points from the old grid as
required, and then to fully retriangulate the new set of points.
However, this would be very inefficient since triangulation
methods, such as the Delaunay triangulation, typically require
€(n log n) operations, where n is the number of points. It is
highly desirable that the triangulation be obtained simulta-
neously with refinement or coarsening. For the grid refine-
ment strategy chosen here, this is very easy to accomplish, as
shown in Fig. 4. The figure on the left depicts the original
grid, the dotted lines in the central figure are the two new
edges created joining the new point with the neighbors of the
original edge. This default triangulation is always possible on
an arbitrary grid following a refinement and the updates to
the point, edge and cell data structures of the grid are deter-
mined easily, using only the edge data structure. The figure
on the right in Fig. 4 snowing the final triangulation will be
discussed later under edge swapping.

Retriangulation following coarsening is more complicated
than retriangulation after refinement since there is no auto-
matic way of reconnecting the remaining points. The number
of neighbors varies and there is no unique triangulation of
the polygon left after the point is removed. The current ap-
proach uses a general algorithm for triangulation of a polygon
which seeks to create a valid triangle out of three successive
points of the polygon such that the length of the new side

Refinement +
Initial Triangulation Default Triangulation Final Triangulation

Fig. 4 Illustration of grid refinement followed by edge swapping.



MATHUR, MADAVAN, AND RAJAGOPALAN: METHOD FOR TURBOMACHINERY ANALYSIS, PART I 581

Fig. 5 Illustration of grid coarsening.

generated is minimized. The polygon remaining after the new
triangle has been formed is then treated similarly, and this
process is continued till the entire polygon has been retrian-
gulated, as illustrated in Fig. 5, which depicts a section of the
mesh before and after deletion of the point A.

Edge Swapping
Although the refinement and coarsening procedures de-

scribed above produce valid grids in a very efficient manner,
the grids are not necessarily globally optimal and can have
elements with small angles or areas. A simple localized cor-
rection procedure can be used during the refinement and
coarsening process to ensure better grid quality. The idea is
based on a property of Delaunay triangulation which guar-
antees that in any quadrilateral, of the two possible diagonals,
the one chosen is such that the minimum angle is maximized.
This principle provides a very convenient mechanism for con-
verting any existing triangulation of a set of points to the
Delaunay triangulation by visiting each edge and swapping it
in favor of the alternative if it fails to meet the criteria. The
process is repeated until all edges are made to conform in
this manner. This approach is particularly attractive in the
present context, since it only needs to be applied locally. A
very simple and elegant implementation of edge swapping is
possible if programmed in a language that supports recursion,
since every time an edge is swapped, the procedure can simply
invoke itself for all the edges that are affected.

An illustration of the improvement that can be obtained
by edge swapping is shown for the situation following edge
refinement in Fig. 4. It is easy to show that the four edges
meeting at the newly created point will be part of the final
Delaunay triangulation, and hence, only the edges of the
quadrilateral need to be checked for possible swapping. The
final triangulation after two of these edges have been swapped
is sketched in the figure on the right. It is quite clear that the
edge swapping prevents triangles with small angles. It is also
interesting to observe from the figure that the new triangu-
lation has edges with smaller lengths, although only one of
the original edges was refined. A final point to note regarding
edge swapping is that the decision to swap need not be based
always on the Delaunay criterion. If some other grid opti-
mality principle is desired, such as the minimizing of the max-
imum angle, edge swapping can still be used to obtain a grid
satisfying that criterion, starting from any given triangulation.

Grid Smoothing
When the edge swapping procedure is used simultaneously

with the refinement and coarsening procedures, the resulting
grid can be optimal in the sense of satisfying the Delaunay
criterion everywhere, with the possible exception of boundary
regions. However, this still does not ensure that the variation
in adjacent cell areas is smooth. This situation is most easily
visualized in case of coarsening of a regular triangular grid.
If the points are deleted such that all neighbors of each deleted
point are protected from deletion, the Delaunay triangulation

of the new set of points will not be as regular as the original
grid. However, a few sweeps of grid smoothing, where each
interior point is successively relocated to the centroid of its
surrounding polygon, can be used to recover a smooth coars-
ened grid.

The main disadvantage of grid smoothing is that the solution
must be interpolated at the new locations of the points. How-
ever, since every point moves only within the surrounding
polygon, global searches are not required in order to locate
the cell in which the new location lies, and thus this inter-
polation is considerably faster than what would be required
following a complete remeshing. In addition, this smoothing
does not have to be invoked after every adaptation, but only
when the grid quality becomes very poor. Also, only those
points which are farther away from the centroid of their sur-
rounding polygon than a specified tolerance are actually moved
to the new location.

Boundary Conditions
The success of any zonal scheme depends on the proper

implementation of interface boundary conditions. The bound-
aries that occur in the present method can be classified into
two categories—the "natural" boundaries that are inherent
to the problem, and the "artificial" interface boundaries in-
troduced by the decomposition of the domain.

Airfoil Surface Boundaries
At all points on airfoil surfaces, the conditions of no-slip,

adiabatic wall, and zero normal derivative of pressure are
imposed. Note that in the case of the rotor, "no-slip" implies
zero relative (not absolute) velocity. Reference 4 provides
details of the implicit implementation of these boundary con-
ditions.

Inlet and Outflow Boundaries
Subsonic inflow and outflow boundary conditions are im-

posed at the left boundary of the first airfoil row and the right
boundary of the last airfoil row, respectively. At the inlet,
three quantities (a Riemann invariant, the total pressure, and
the inlet flow angle) are prescribed while the fourth quantity
(also a Riemann invariant) is extrapolated from the interior
of the solution domain. At the outflow boundary, one Rie-
mann invariant is extrapolated from the interior, along with
the v velocity and entropy, while the static pressure is pre-
scribed.

Except for one detail, the implementation of these bound-
ary conditions is identical to that in case of structured grids.
Extrapolation of flow quantities from the interior is usually
achieved by taking those values from the next inner line par-
allel to the boundary. However, in the case of unstructured
grids there is, in general, no such set of points. To avoid
expensive interpolation, the inlet boundary is extended by

Periodic Boundary

Structured / Unstructured
Grid Interface

- Inlet Boundary
Extended Inlet Boundary

Fig. 6 Unstructured outer grid with extended inlet boundary.
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adding a set of points that mimics the situation found in struc-
tured grids, as shown in Fig. 6.

The specification of static pressure at the exit leads to a
reflective boundary condition. Following Ref. 23, both one-
and two-dimensional nonreflective boundary conditions were
implemented in the present method. These boundary con-
ditions are based on the work of Refs. 24 and 25. The results
of these implementations are not discussed here; the reader
is referred to Ref. 26 for details.
Periodic Boundaries

For ease in imposition of periodicity over one rotor or stator
pitch (or composite pitch when multiple airfoils are considered
in each row), a one-to-one correspondence is maintained be-
tween the point distributions on the upper and lower bound-
aries of the unstructured grids. The flux terms for the points
on the upper boundary are calculated based on the half con-
trol-volume surrounding them and then added to the corre-
sponding points on the lower boundary. In unstructured grids
this can be accomplished easily by modifying properly the
edge-based data structure used to express the connectivity of
the grids. For example, the data structure for the edge i in
Fig. 6 consists of A and B as its endpoints, and the points C
and D as the left and right neighboring points. Likewise, the
edge j is considered to be directed from D to B, and has A
and E as the two neighbors. Once the data structure for all
edges that have an end-point or a neighbor on the periodic
boundary has been similarly modified, the solution procedure
described above implicitly accounts for the periodicity, and
no special procedures are necessary.
Inner-Outer Grid Interfaces

The inner boundary of the outer unstructured grid and the
outer boundary of the inner structured grid share the same
set of points, thus obviating any need for expensive inter-
polation. The flow variables at these points are not updated
during the inner grid solution procedure. Updating them dur-
ing the outer grid solution process requires the definition of
a complete control volume around these points, and this can
be accomplished by extending the unstructured grid inside the
structured zone. Two possible approaches are depicted in
Figs. 7 and 8 where the augmented unstructured grid is shown
by the dotted lines. In the first approach, which is used in the
central difference algorithm, triangular cells are formed with
additional points that are introduced midway between the
segments on the next inner f line of the inner grid. This

Unstructured Outer Grid

Interface Boundary

Structured Inner Grid
, 7 Inner-outer grid interface for central difference scheme.

Unstructured Outer Grid

Interface Boundary

Structured Inner Grid
Fig. 8 Inner-outer grid interface for upwind scheme.

arrangement is preferred over the triangulation of the inner
grid quadrilaterals because it results in a smoother grid. In
the second approach, depicted in Fig. 8, the outer triangular
mesh is augmented with a set of quadrilateral cells. The points
near the interface now have common control-volume bound-
aries, and therefore flux conservation across the grid interface
can be ensured.

The above procedure raises an issue regarding time accu-
racy of the solution at the zonal interfaces. In any zonal al-
gorithm the solution in the different zones is updated (to the
next time level) in a sequential manner. If an iterative scheme
is employed at each time step, then the grids are updated
sequentially during each iteration, with the information across
zonal interfaces "lagged," i.e., held constant at values from
the previous iteration. Any errors associated with this lagging
of information can be driven to zero by performing a sufficient
number of iterations to converge the solution in each zone at
each time step. In the present method, this strategy is not
feasible at the interface between the outer and inner grids,
since different time stepping schemes are employed in the two
regions and there is no correspondence between the inter-
mediate solutions of the Runge-Kutta stages of the outer grids
and the Newton iteration steps of the inner grids. Therefore,
the solution at the next time level is obtained first for all the
outer zones by performing the four explicit Runge-Kutta in-
tegration steps, keeping the solution at the additional points
that lie inside the inner region constant at the values from
the previous time step. One can compensate easily for this
lagging of information by introducing additional layers of un-
structured grid cells that extend deeper into the inner grid.
Thus, in the first stage of the four-stage Runge-Kutta inte-
gration, only the innermost layer of points have to be held
constant while the rest can be updated; in the second stage,
two layers of points are held constant while the rest are up-
dated, and so on for the third and fourth stages. The solution
is then updated in the inner zones, followed by a post-update
correction where all outer grid points that lie inside the inner
grids are interpolated from the current inner grid values. An
analysis of the effective influence stencil over the four-stage
scheme employed in the present work indicates that to ensure
full second-order accurate update of the points on the inter-
face, the augmented unstructured grid should extend eight
cells deep into the inner grids. Numerical tests carried out
using this approach did not result in any appreciable improve-
ment in the temporal accuracy of the solution (in terms of
surface pressure amplitudes, and other similar quantities) for
the problems considered. Hence, the simpler inner-outer in-
terface treatment described above was used to obtain all the
solutions reported here.

Rotor-Stator Grid Interfaces

This interface occurs between the outer unstructured grids
of two adjacent rows of airfoils which slip past each other.
Flux conservation across this interface is ensured in the fol-
lowing manner. When the grid on the left is being updated,
the points on its right boundary cannot be updated to the
next time-step since only half a control volume exists around
them, as shown in Fig. 9 for point A. This partial contribution
to the flux terms for the boundary points is computed and
stored. The flux contribution at the points is considered as a
piece-wise constant distribution of fluxes along the interface
boundary. Therefore, the flux calculated for point A is dis-
tributed over half of edges A-C and A-B. During the sub-
sequent update of the grid on the right, this contribution is
transferred to the edges on the left boundary of that grid in
a conservative manner. The edge distribution is then accu-
mulated at the boundary points on the next grid. The con-
tribution of the half-control volume to the right is added to
the left boundary points of the right grid as usual, and the
flow quantities at the next time step are thus obtained at these
points.
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Fig. 9 Stator-rotor grid interface.

Once all the grids have been updated in this fashion, the
dependent variables on the right boundaries of all but the last
airfoil row are interpolated from the new values on the left
boundaries of the next grid, thereby completing the update
to the next time level at all the points on the unstructured
outer grids.

Grid Adaptation for Moving Boundaries
Apart from enhancing the grid to improve the solution

quality, the adaptation capability of unstructured grids can
also be exploited for other purposes. In the present method,
one such use of grid adaptation is possible at the interface
between two unstructured grids in relative motion. If the rotor
and stator grids in a turbomachinery stage computation are
not modified, then, as the rotor moves past the stator, the
interface changes at each time step. Interpolation searches
are thus necessary at each time step in order to transfer in-
formation across the interface. However, if the stator grid is
adapted such that each boundary point at the edge always
coincides with some point on the rotor grid boundary, then
the interpolation becomes trivial. This is achieved in the fol-
lowing manner. At the beginning of each time step, the rotor
grid is moved to its new location based on the rotor speed.
The right boundary points of the stator grid are then moved
along the boundary, in either direction, to the nearest point
on the rotor boundary. This procedure is illustrated in Fig.
10 which depicts the region in the vicinity of the interface at
four instances of a rotor-passing cycle. (A cycle is defined as
the time taken by the rotor grid on the right to move through
a distance equal to one pitch.) Close inspection of the figure
reveals that the outer unstructured grid around the two stator
airfoils, marked SI and S2, remains unchanged, except for
the points on its right boundary. The figure also shows the
unstructured grid around the rotor airfoils, Rl and R2, trans-
lating downwards, but without any relative motion between
the grid points. This procedure is quite efficient since only
the points on the boundary are moved, and furthermore, this
motion is confined along the boundary line. The grid con-
nectivity remains unchanged for both grids. The distortion
introduced by moving the boundary points is quite small since
the maximum distance a point can traverse is half of the

Fig. 10 Grid adaptation for moving boundaries.

maximum grid spacing at the boundary. The only requirement
for this procedure is that the number of points on the two
boundaries should be the same, but this is not a concern for
unstructured grids since this requirement does not impose any
restrictions on the grid densities in the interior of either grids.
It is obvious from Fig. 10 that with this type of grid adaptation,
the entire outer unstructured region appears essentially to be
discretized with a single grid at all instants. Thus, this type
of grid adaptation is also very useful for implementing higher
order methods since no reduction in accuracy at the interfaces
is incurred.

Overview of the Algorithm
The main steps of the overall hybrid algorithm are sum-

marized as follows. The solution process begins with an initial
guess for the conserved variables (usually the inlet values) on
all grids. The following steps are then carried out at each time
step for the outer unstructured grid of each airfoil row in
sequence.

1) The flow variables at the augmented grid points on the
inner-outer grid interfaces are calculated from the current
values on the inner grid.

2) The flux terms are calculated for all points. Except for
the last row, the partial fluxes at the right boundary are stored
for use in the next grid and, for all but the first row, the stored
flux terms from the previous row are interpolated onto the
points at the left boundary.

3) The flow variables are then updated to the next iteration
level.

These steps are repeated for all the rows and for each of
the four stages of the Runge-Kutta scheme at the end of which
all the unstructured grid points have been updated to the next
time step. The inner structured grids are then updated in se-
quence as follows:
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1) The flow variables at the outer boundaries are copied
from the unstructured grid. (Although the inner and outer
grids share the same set of points at their interface, for ease
of implementation, the points are maintained in data struc-
tures associated with both the grids.)

2) The solution for the inner grids is advanced to the next
time step using several iterations of the iterative implicit al-
gorithm at all points except the outer boundary where bound-
ary conditions are prescribed.

A post-update correction step is carried out at the end of
the time step. This involves imposition of airfoil surface
boundary conditions for the inner grids, inflow and outflow
boundary conditions at the left and right boundaries of the
first and last unstructured grids, respectively, and the inter-
polation of flow variables at the right boundaries of all grids
(except the grid for the last airfoil row). The grid adaptation
procedure is invoked once every few (typically, 50) time steps.

Summary
A solution-adaptive hybrid-grid method has been devel-

oped for the two-dimensional analysis of unsteady flows in
turbomachinery. The present approach uses a hybrid struc-
tured-unstructured zonal grid topology along with modeling
equations and solution techniques that are most appropriate
in the individual domains, thus combining the advantages of
both structured and unstructured grid methods. An efficient
and robust grid adaptation strategy, including both grid re-
finement and coarsening capabilities, is incorporated. The
grid adaptation is also exploited to simplify the transfer of
information across the moving interface between adjacent
stator and rotor grids. Although results have been presented
here only for a single-stage turbine, the present method is
also capable of treating multistage turbomachinery configu-
rations. For generality, three-dimensional effects of stream-
tube contraction are also included in the analysis. Details of
the numerical method are presented in this article. Results
obtained using this method and comparisons of these results
with experimental data and earlier structured-grid based
methods can be found in the companion article (Part II).
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