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Sensor Biases Effect on the Estimation Algorithm for
Performance-Seeking Controllers
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The performance-seeking-control algorithm (PSC) is designed to continuously optimize the performance of
propulsion systems. The PSC uses a nominal model of the propulsion system and estimates, in flight, the engine
deviation parameters (EDPs) characterizing engine deviations with respect to nominal conditions. In practice,
the measurement biases (or model uncertainties) may prevent the estimated EDPs from reflecting the engine's
actual off-nominal condition. This factor has a direct impact on the PSC scheme exacerbated by the open-loop
character of the algorithm. An observability analysis shows that the biases cannot be estimated together with
the EDPs. Moreover, biases and EDPs turn out to have equivalent effects on the measurements, leaving it
undecided whether the estimated EDPs represent the actual engine deviation or whether they simply reflect the
measurement biases. In this article, the effects produced by unknown measurement biases over the estimation
algorithm are evaluated. This evaluation allows for identification of the most critical measurements for appli-
cation of the PSC algorithm to an F100 engine.
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Nomenclature
state variable model matrices
area adder high-pressure turbine
deviation parameter, in.2

nozzle throat area, in.2

bleed airflow, Ib/s
compressor inlet variable guide vane
angle, deg
high-pressure turbine efficiency
deviation parameter, percent
low-pressure turbine efficiency
deviation parameter, percent
inlet drag, Ib
fan airflow component deviation
parameter, Ib/s
high-pressure compressor airflow
deviation parameter, Ib/s
fan turbine inlet temperature, °F
gain submatrices of the optimization
model
power extraction, hp
identity matrix of dimension m
fan and compressor rotor speed,
respectively, rpm
estimate, process, and measurement
covariance matrices, respectively
ambient pressure, lb/in.2

burner pressure, lb/in.2

static pressure, lb/in.2

total pressure, lb/in.2

rear compressor variable vanes, deg
composite turbine metal
temperature, °F
total temperature, °F
incremental state variable
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Subscripts
ap
aux
b
eq

Symbols

measured and incremental measured
output vector, respectively
unmeasured and incremental
unmeasured output vectors,
respectively
output vector and incremental
output vector, respectively
bias vector in the output and input
measurements, respectively
engine deviation parameters vector
process and measurement noise of
the Kalman filter model, respectively

apparent
auxiliary
base point
equivalent increment

= set of real numbers
E = is a member of
[ ]T = matrix transpose
A = estimated variable

Introduction

T HE objective of the performance-seeking-control algo-
rithm (PSC) is to operate a (turbofan engine-based) pro-

pulsion system as closely as possible to its optimum steady-
state working condition without compromising reliability and
operability.1"4 Three different operating modes are sought
corresponding, respectively, to three different optimization
criteria. They are 1) minimum fuel consumption, 2) minimum
temperature of the hot section of the engine (also called ex-
tended engine life mode), and 3) maximum thrust.

The PSC system was implemented on the NASA F-15 re-
search aircraft, which is powered by two F100 derivative
(PW1128) afterburning turbofan engines.2 The aircraft was
modified with a full-authority digital electronic engine control
(DEEC) system. The DEEC provides basic open-loop sched-
uling and closed-loop feedback control of the propulsion var-
iables.2 Its software was modified to accommodate PSC trim
commands without altering the basic control functions. The
PSC system testing at subsonic flight conditions2 shows up to
15% increases in thrust, up to 100°R reductions in the turbine
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temperature, and between 1-2% savings in thrust specific
fuel consumption (TSFC). Preliminary flight evaluations of
the PSC algorithm at supersonic flight conditions have been
performed indicating thrust increases of approximately 10%,
and a TSFC reduction of approximately 9%.5

The optimization is based on a steady-state model of the
entire propulsion system (integrating the inlet, the engine,
and the nozzle) called the optimization model. A fixed model
of the propulsion system would not be able to account for the
significant changes experienced by the engine during its life
span (engine deterioration) or for the differences from air-
craft-to-aircraft resulting from manufacturing variability. As
such, a mechanism for the adaptation of the engine model is
required. For this purpose, the optimization model includes
a set of adjustable parameters: the engine deviation parameter
(EDPs), characterizing the current engine operating condi-
tion. In-flight estimation of the EDPs gives an adaptive char-
acter to the PSC. The estimation is performed with a Kalman
filter (KF) based on a reduced-order linear dynamic model
of the engine called the estimation model.

The algorithm is expected to work well when the estimated
values of the EDPs actually represent the current off-nominal
conditions of the engine. However, it has been shown during
flight testing2 that the estimated EDPs may not correspond
to known levels of engine deterioration. This fact is attributed
to other sources of model-engine mismatch not accounted for
by the EDPs. Poor EDP estimates translate into an inade-
quate prediction (provided by the optimization model) of the
engine's behavior, which in turn may degrade the optimization
process. Given the importance of the estimation algorithm in
the overall adaptive PSC scheme, the effects of measurement
biases (or other model inaccuracies) over the optimization
process need to be evaluated.

In this article, we show that with the present measurement
system unknown biases cannot be estimated independently of
the EDPs and, consequently, that their effects may not be
compensated for. A sensitivity approach is used to quantify
the biases' influence over the predictions of the steady-state
optimization model. The study allows us to decide, for the
F100 engine, which measurement biases have more influence
over the estimation process and which estimates are affected
the most by the biases.

Background and Problem Formulation
Figure 1 is an F100 engine diagram showing the location of

the DEEC instrumentation, the DEEC-calculated variables,
and the parameters calculated by the PSC algorithm. Figure
2 shows an information flow diagram of the PSC algorithm.
The PSC consists of an estimation algorithm, which updates
the EDPs' estimates, and an open-loop model-based opti-
mization control law. Each process—estimation and opti-
mization—is based on a different set of local models of the
propulsion system. The current local model for each process
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Fig. 1 F100 engine and sensor locations of sensors. 2 = fan inlet,
2.5 = compressor inlet, 3 = compressor discharge, 4 = high-pressure
turbine inlet, 4.5 = low-pressure turbine inlet, 6 — afterburner inlet,
7 = nozzle throat.
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Fig. 2 Flow diagram of the PSC algorithm.

is selected on the basis of flight data. More details on the
overall structure of the PSC system can be found in Ref. 2.

The engine model relates the measured input vector U with
the output vector Z defined as

UT : = [WF Aj CIVV RCVV HPX BLD] (la)

YT : = [N1N2 PT4 FTIT PT6]

(Ib)
(1C)

Fa
r
ux := [TT6 WCFAN PT2.5 TT2.5 7T3 TT4 WCHPC]

(Id)

Where Y is the measured outputs and Faux is a set of unmea-
sured variables required by the optimization process. (PT4 is
considered as a measured variable though it is calculated as
function of the measure of PB.)

In order to account for significant deviations with respect
to nominal conditions experienced by the engine during its
life span (engine deterioration) or for engine-to-engine man-
ufacturing variability, the optimization model includes a set
of adjustable parameters called the EDPs denoted as1"4

if : = [DEHPT DELPT DWHPC DWFAN AAHT] (2)

For the nominal engine, 17 = 0. We now define

u:=U-Ub, y:=Y-Yb and z:=Z-Zh (3)

where Ub, Yb, and Zb are, respectively, the vectors f/, F, and
Z evaluated at some predicted engine trim point called base
point.

The following linear model has been used1 to characterize,
locally around a base point, the dynamic relationship between
the input U and the measured output Y for a given off-nominal
condition quantified by the time-invariant vector 17:

x = Ax + Bu + LJ]

y = Cx + Du + Mr]

(4a)

(4b)

Equations (4), called the state variable model (SVM), were
developed by Luppold et al.1 through model order reduction
and linearization of the aerothermodynamic equations of the
engine. The incremental state variable x is defined as

XT : = [Nl - Nlb, N2 - N2b, TMT - TMTb] (5)

where TMT is a composite variable representing the thermal
state of the hot section of the engine. Again, Nlb, N2b, and
TMTb represent the corresponding variables at the base point.
Finally, A, B, C, D, L, and M are matrices with the appro-
priate dimensions.
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The continuum set of possible base points covering the
operation range of a nominal engine for a particular reference
flight condition is discretized. The discrete base points are
computed using the state of the art propulsion program
(SOAPP) which is a detailed model of the whole propulsion
system.6 The reference flight condition used in the present
study corresponds to standard day conditions, Mach 0.9, and
an altitude of 30,000 ft. By using correction factors, calculated
as a function of the total inlet pressure and temperature, the
results can be converted to the actual given flight conditions.
In this way, the validity of the model can be extended to the
whole flight envelope.

Estimation Process of the PSC Algorithm
The estimation process is based on a set of local engine

linear dynamic models1-4 represented as

x = Ax + Bu + Lrj + o)x

y = Cx + Du + Mr) + p

(6a)
(6b)
(6c)

a)^, (»v, and p are centered white noises with positive definite
covariance matrices, respectively: Q^, Qx, and R. The ma-
trices A to M are calculated by numeric linearization, using
the SOAPP for a set of 49 base points covering the power-
setting range and indexed with PT4 values ranging from 23
to 260 lb/in.2 The matrices are updated in flight, based on the
PT4 index nearest to the measured value of PT4 with some
hysteresis to avoid undesired switching.

With model (6), 17 and x are estimated simultaneously using
the asymptotic KF (see, for instance, Refs. 7 or 8)

(7)

(8)

e
where P is the steady-state solution of the Riccati8 differential
equation associated with the covariance matrix of the esti-
mation error calculated from

FP + PFT + Q - PHTR~1HP = 0 (9)

R is estimated from the sample statistics of the output mea-
surements. The submatrix Qx can be associated with the input
noise. The entries of the submatrix Q^, which has no physical
meaning in this context, are used as "tuning parameters"
empirically adjusted to give a good compromise between time
response and noise rejection. The design gives as a result 49
matrices K E [R8x5 (one for each point indexed by PT4) that
are stored together with the matrices A to M.

Optimization Model of the PSC Algorithm
The optimization model of the PSC algorithm (see Fig. 2)

is a simplified steady-state model of the propulsion system
called the compact propulsion system model (CPSM). It com-
bines two submodels: the compact inlet model (CIM) and the
compact engine model (CEM). The subsonic CIM calculates
the DINL and PT2 as functions of the Mach number, cor-
rected fan airflow (WCFAN), and Famb. At subsonic flight
conditions, the inlet geometry is scheduled and is not modified
by the PSC algorithm. The CEM comprises the engine and
the nozzle. Part of the CEM is the steady-state variable model
(SSVM), which consists of a piecewise linearization of the
steady-state formulation of the aerothermodynamic equa-

tions. Each of the SSVMs local models relates the vector 17
[defined in Eq. (2)] with small increments in Z, Y, and U [see
definitions in Eq. (3)] around a base point in the following
way:

where: Gy E IR5x6; Gaux E IR7x6; Hy E R5x5; Haux E U7x5.
The relationship between the incremental input vector 11 and
the incremental measurable vector y can thus be written as

y = Gyu •+ Hyrj (11)

Equation (11) is the steady-state version of the SVM [Eq.
(4)] and can be determined from the latter by equating the
time derivatives to 0. Matrices Gv, Gaux, //v, and //aux are
calculated off-line based on the SOAPP for each of the dis-
crete tabulated base points. Their values are also tabulated
and are used to determine, by interpolation, the current ma-
trices of model (10) each time the base point is updated. The
interpolation is performed using as indices the variables PT4
and PT6. The last estimation of 17 is introduced into the model
(10), which is used by the optimization process to determine
the new trims to be sent to the actuators (see Fig. 2). Notice
that 17 is an intermediate entity used only to predict z for a
given u inside the optimization process.

Observability Conditions and Equivalence Between
Biases and EDPs

Observability of the EDPs
A necessary condition (see, for instance, Ref. 8) for the

existence of the asymptotic KF [Eqs. (7-9)] is the observa-
bility of model (6) (consult Ref. 9 for a definition of the notion
of observability). Since the observability of model (6) can be
tested directly from its matrices, the following question may
be addressed: which is the largest dimension of 17 compatible
with its identifiability with the steady-state Kalman filter (7)?
We prove that the dimension of 17 must be less than or equal
to the number of available output measurements. For this,
we use the following result proven in Appendix A.

Proposition 1. If, given the model (6) with n the dimension
of x, p the dimension of 17, and m the dimension of y, the
matrix

\A L]
[C M\ (12)

is such that rank* (5) < n + p, then, model (6) is not ob-
servable.

Now, since S has at most rank n + m, a necessary condition
for model (6) to be observable is that, according to Propo-
sition 1, n + m > n + p or, equivalently, m > p, which
implies that one needs at least as many measured outputs as
the dimension of the vector 17. The latter condition is satisfied
by the engine's model (6) [or (4)] with/? = m — 5, implying
that no extra estimable components can be added to the vector
17 to quantify an off-nominal engine condition, unless more
measurements are made available.

Equivalence Between Biases and EDPs
Biases may be present either in the input or the output

measured variables. With the present measurement system,
the biases' effects cannot be distinguished from those pro-
duced by "equivalent" EDPs. We show this for the steady-
state model (10). The proof for the actual dynamic model (4)
follows similar lines and may be consulted in Ref. 10.

Consider an input bias vector v and an output bias vector
y. The input-output relationship [Eq. (11)] is thus written as

y = Gyu + Gyv + y (13)
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From Eq. (13) one sees that, at least in steady state, biases
v and y cannot be distinguished from an (apparent) equivalent
increment in 17 given by

= H-\Gyv+ y) (14)

The invertibility of the matrix Hy is clearly satisfied in prac-
tice; otherwise, it can be seen from Eq. (13) that the chosen
EDPs will not have independent effects on the measured out-
puts. Equation (14) explains how biases in measurements alter
the estimated EDPs. Moreover, it warns us that any "esti-
mated" off-nominal condition may only be the effect of a
particular set of biases.

Given the equivalence between biases and EDPs, with
Proposition 1 and subsequent discussion, one concludes that
the biases cannot be estimated unless more unbiased measures
are made available.

Estimation Errors Induced by the Biases
As shown previously, the effects of biases in the measure-

ments cannot be distinguished from increments on the EDPs.
Any estimation algorithm will then be unable to discern whether
the apparent EDPs are the consequence of a real departure
of the engine from its nominal behavior or whether they are
simply caused by biases in the measurements. Since biases
cannot be estimated with the present measurement system,
the estimates are affected by an error that is impossible to
determine (or estimate) unless the biases are known a priori.
We now proceed to calculate the errors induced by the mea-
surement biases.

We call ifeqM and *?eq(y) the apparent increments of 17
(giving rise to corresponding EDP estimation errors) induced,
respectively, by biases in the inputs and biases in the measured
outputs. Based on Eq. (14), they are defined as

They clearly satisfy: i7eq(i>) + *?eq(y) = ^eq- The estimate,
jaux, calculated using the optimization model (10), is

Jaux ~ GauxW + ^aux1? (l^a)

*) : = *?ap + *? (17b)
%p := V + *?eq (17C)

where 17 is the estimation provided by the KF. Notice that
when ijeq =. 0, the "apparent" value of 17 is 17 itself, i.e.,
ijap = ij. Only in this case the estimation error is 17 : =
ff - rj.

On the other hand, the actual (but unknown) value of y.dux
as a function of the unknown bias v is given by

Jaux = (w + V) + JFfauxl| (18)

The estimation error yaux : = j>aux - .yaux can be obtained
subtracting (18) from (17a). Its component due to the input
measurement biases and that due to the output measurement
biases are, respectively

- Gam]r (19)

(20)

Equations (19) and (20) are used in the next section to eval-
uate the biases' effects for a particular engine.

Quantitative Study of the Biases' Effects
The results of the previous section are used to measure the

influence of the biases on the estimation errors of the auxiliary

variables for the F100 engine of the F15 PSC-test bed aircraft
at NASA Dryden. We investigate 1) which biases are most
influential and, thus, where to concentrate efforts to improve
the instrumentation; and conversely, 2) which of the estimated
propulsion variables are affected the most by the biases.

The errors induced by the biases on the calculated auxiliary
variables are used as a measure of the effectiveness of the
estimation process and the measurement system. Those var-
iables were chosen since they are the ultimate estimate var-
iable transmitted to the optimization process. The auxiliary
variables are normalized to allow the comparison of magni-
tudes of different physical natures under a single scale. The
normalizing factors were selected equal to what experience
shows to be a typical excursion of the value of each parameter
during PSC flight testing. Those magnitudes are stated in
Appendix B. By plotting normalized auxiliary variables, it is
possible to discern between "big" and "small" effects of the
biases. For instance, a big (small) bias effect is one that pro-
duces a deviation in the corresponding auxiliary variable which
is, "somewhat," comparable to (small with respect to) a typ-
ical excursion—the normalizing factor—in that variable. The
same notions of big or small can similarly be applied to the
biases themselves. In what follows, the ratio between the
normalized deviation of an auxiliary variable, and the nor-
malized bias that produces the deviation will be called am-
plifying factor of the bias with respect to the specific auxiliary
variable.

The study is carried out over the whole range of PT4 of
the reference flight conditions without afterburner. Given the
close relationship between PT4 and the engine's power, the
results illustrate the influence of the power setting on the
accuracy of the estimation. All the magnitudes are expressed
in percentages of the normalizing factors.

Effects of the Input Biases
Relationship (19) is used for each local model, indexed by

PT4, to study the effects of the input biases over the esti-
mation errors of the auxiliary variables. Biases of 1% (with
respect to the corresponding normalizing factor) were con-
sidered for each input, and their effects on yaux plotted as a
function of PT4.

The results show a very important influence of a bias on
WF (see Fig. 3a). Its effect may be orders of magnitude bigger

% error
lOQi———

20-

80%
60-^
40-

T6

WCFAN PT4 lb/so.sec

50 100 150 200 250

Fig. 3 Normalized auxiliary variable estimation errors resulting from
a 1% bias in WF as a function of PT4: a) involving WCHPC and b)
enlarged scale not involving WCHPC.
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Fig. 4 Normalized auxiliary variable estimation errors resulting from
a 1% bias in AJ as a function of PT4.
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Fig. 5 Normalized auxiliary variable estimation errors resulting from
a 1% bias in RCVV as a function of PT4.
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Fig. 6 Normalized auxiliary variable estimation errors resulting from
a 1% bias in FTIT as a function of PT4.

error

WCFAN

50 100 150 200 250

Fig. 7 Normalized auxiliary variable estimation errors resulting from
a 1% bias in PT6 as a function of PT4.

than those induced by the rest of the inputs. Notice, in par-
ticular, the important effects on corrected high-pressure com-
pressor airflow (WCHPC) which attains amplifying factors as
big as 20 at middle powers. From the enlargement of Fig. 3a
given in Fig. 3b, one sees that TT6 and WCFAN, with am-
plifying factors bigger than 2, are also considerably affected.
Biases in AJ are mainly perceived on the estimation of WCFAN
(see Fig. 4). Unlike the effects of the bias in WF, the influence
of a bias in AJ increases with the power level. The other input
biases have no significant incidence on the estimates. Figure

5 illustrates, for instance, the effects of a bias on RCVV which
attains amplification factors much smaller than unity.

In terms of the possible biases affecting the inputs, we thus
conclude that 1) gas generator gas flow WFis largely the most
critical input variable and its effects are particularly strong
for low and medium power settings; 2) the biases in CIVV
and RCVV do not have any significant influence on the es-
timated variables; 3) biases in AJ have a significant influence
on the estimation of WCFAN; and 4) only the estimates of
WCHPC, WCFAN, and TT6 can be considered to be affected
by the input biases.

Effects of the Output Biases
An analog study for the output variables, conducted by

using Eq. (20), shows amplifying factors greater than 4 for
FTIT and afterburner inlet total pressure (P76) at middle-
and high-power settings (see Figs. 6 and 7). The biggest effects
are those produced on WCHPC by a bias in FTIT (amplifying
factor of 4 to 6). Similar plots for the rest of the input variables
can be found in Ref. 10, where it is also shown that PT4 has,
in the worst case (with respect to 773), an amplification factor
smaller than 1. Given the generally good quality of the mea-
surements of Nl and N2, we are not concerned by the effects
of their biases.

In terms of possible biases affecting the output, we conclude
that: 1) biases in F7/7 and PT6 have a noticeable effect on
the estimations; and 2) as with the input biases, the estima-
tions most affected are WCHPC and WCFAN (see Figs. 6
and 7). To a lesser extent, 776, 774, and 773 are also af-
fected.

Concluding Remarks
The EDP estimates do not necessarily quantify the engine's

off-nominal behavior. For instance, it is impossible to distin-
guish the effects produced on those estimates by an off-nom-
inal engine condition from those caused by measurement biases.
For PSC application, a given engine off-nominal characteri-
zation needs to be evaluated through the effects that biases
may have on the predictions provided by the optimization
model. The accuracy with which the latter predicts the output
variables is the ultimate measure of the effectiveness of the
estimation process. Here, the errors induced by the biases on
the calculated auxiliary variables are used as a measure of the
effectiveness of the estimation process and the measurement
system. It is thus determined that the most critical measure-
ments are WF, AJ, FTIT, and P76. Unknown biases on those
measurements may have a strong effect on the optimization
through a wrong estimation of the engine's variables. Among
these variables, the most affected are the WCHPC, the
WCFAN, and the afterburner inlet total temperature (776).
The strong influence of the biases on the airflow estimates is
of special importance, inasmuch as those estimates are key
for the thrust calculation and, consequently, can sensibly af-
fect the subsequent performance optimization.

The open-loop nature of PSC makes it very sensitive to
model-engine mismatches and, in particular, to unknown in-
put or measurement biases. An apparent estimated engine
deviation may only be the effect of unknown biases. Under
these conditions, trying to improve the performance of an
engine in apparently "good shape" (which in fact is not) could
lead to inadvertent violations of the optimization constraints
and eventually to the activation of the engine's safety guard
devices. Conversely, if the engine is better than it seems through
the estimation process, a too conservative control will not
take advantage of the engine's actual capabilities. Conse-
quently, it is conceivable in this case that the PSC system will
issue commands leading to a worse performance than the one
obtained with the nominal model in the nonadaptive case.
This conclusion strongly demonstrates the need to develop
new adaptive performance optimization techniques less sen-
sitive to an a priori engine model on which are based on the
feedback of an actual performance measure.
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Appendix A: Proof of Proposition 1
Using standard results of the observability theory of linear

systems,9 it can be readily shown that model (6) is completely
observable, if and only if the matrix

O : =

c
CA
CA2

M
CL

CAL

has rank n + p. But, since as it can be easily shown

O =

im o i
0 C
0 CA

for rank(O) = n + p it is necessary that S in Eq. (12) be
such that: rank(S) > n 4- p.

Appendix B: Normalizing Factors
Input variables

WF: 2000.0 Ib/h, Aj: 20 in.2, CIVV: 5 deg, RCVV: 5 deg

Output variables

M: 1000 rpm, N2: 1000 rpm, PT4: 50 lb/in.2

FTIT: 200°F, PT6: 5 lb/in.2

Auxiliary variables

TT6: 200°F, WCFAN 20 Ib/s, PT2.5: 5 lb/in.2

772.5: 50.0°F, TT3: 100.0°F, TT4: 200.0°F

WCHPC: 2.0 Ib/s
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