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Single-Passage Euler Analysis of Oscillating Cascade
Aerodynamics for Arbitrary Interblade Phase

James M. Wolff* and Sanford Fleeter!
Purdue University, West Lafayette, Indiana 47907

The unsteady flowfield through a harmonically oscillating cascade of airfoils is investigated using a time-
marching Euler code implemented on a deforming C-grid. Various methods of calculating the boundary con-
ditions are considered, with special attention paid to the unsteady periodic boundary conditions and reducing
computer resource requirements. The Euler code is then used to predict the unsteady aerodynamics for both
translational and torsional cascade oscillations for several cascade flow geometries. A flat plate cascade is used
to verify the flow solver with linear theory predictions. A typical compressor rotor configuration is used to
introduce nonlinear effects. The effect of a strong normal shock with varied amplitudes of oscillation demonstrates
the nonlinear behavior of the periodic boundary conditions and helps to define the limiting conditions for
linearized analyses.

Nomenclature
C = airfoil chord
CM = unsteady moment coefficient, ml(C2plVl)
Cp = pressure coefficient, —(p — p\)l(2piV\)
F,G = flux vectors
h{ = amplitude of translational motion based on chord
k = reduced frequency, a)C/2V1
M = freestream Mach number
m = moment
Np = number of time steps in one period of oscillation
PO = total pressure
p = static pressure
Q = dependent variable vector
S = cascade spacing
t, r = time
u, v = velocities in the x and y directions
V = total velocity
x, y = spatial coordinates
a = incidence angle, deg
«! = amplitude of oscillation for torsional motion, deg
ACP = pressure difference coefficient,

(PL - /^/(ipiVKD
I = cascade stagger angle, deg
£,77 = curvilinear coordinate directions
p = fluid density
a = interblade phase angle, deg
a) - angular frequency

Subscripts
L, U = upper/lower periodic boundary condition
0 = steady solution
1, 2 = inlet/exit conditions

Superscripts
n = time level index
0 = time average value
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Introduction

U NSTEADY aerodynamic phenomena continue to pro-
duce serious aeroelastic problems in the development of

new turbomachinery. To minimize this development problem,
accurate unsteady aerodynamic cascade models are required.
Such models are generally time linearized, with the validity
of these linearized models for subsonic flows well-established
for low aerodynamic loading.1-2 However, these linearized
flow models may not be valid for many situations. For ex-
ample, nonlinear effects are quite likely to be associated with
larger amplitudes of blade oscillation as well as unsteady tran-
sonic flows with shock motion induced by oscillating blades
at small amplitudes.

To analyze nonlinear flowfields, unsteady Euler codes are
being developed. Finite difference schemes3"6 are being used
to solve the Euler equations for oscillating cascades by time-
marching methods. However, they require much more com-
puter time and storage than do linearized codes. For cascade
studies, an important aspect of this additional computational
expense is associated with the passage periodic boundary con-
ditions that arise from a constant interblade phase angle be-
tween adjacent oscillating airfoils. Several methods have been
proposed to specify the periodic boundary condition, a-b and
c-d in Fig, 1.

The simplest method is to "stack" airfoil grids and pass
information between adjacent grids. This is accomplished by
expanding the grids so that they overlap along the periodic
boundaries (Fig. 1). The solution is marched globally in time
with each passage's blade moving with a different phase angle.
The solution at the periodic boundaries is then determined
as part of the interior solution. With the airfoils oscillating at
a fixed nonzero interblade phase angle, the minimum number
of airfoils Na that satisfies the periodicity requirement is

Na\v = 360 deg (1)

A 90-deg interblade phase angle analysis thus requires mod-
eling four airfoils and four flow passages. Although numeri-
cally accurate, this method requires additional computational
time for nonzero interblade phase angle calculations, with
some interblade phase angles practically impossible to ana-
lyze.

Single-blade passage techniques, with the periodic bound-
ary conditions phase shifted for nonzero interblade phase an-
gle values, minimize the computational requirements by elim-
inating this flow passage stacking. The direct store method,
first proposed by Erdos and Alzner,7 requires that all the

690



WOLFF AND FLEETER: OSCILLATING CASCADE AERODYNAMICS 691

ELASTIC

Fig. 1 Computational and cascade geometry.

dependent variables on the periodic boundaries be stored for
a period of airfoil oscillation. At every time step, parameters
at the boundaries are updated by averaging the data obtained
from the current time-marching solution and those stored
according to the given interblade phase angle. At the same
time the stored parameters are updated. The periodic bound-
ary condition is satisfied when the time marching process
converges to a periodic solution. The primary disadvantage
of this method is the large computer storage required, es-
pecially at low cascade oscillation frequency values.

Another single-passage approach to the problem of lagged
periodic boundary conditions was developed by Giles.8 The
computational time plane was inclined in the blade pitch di-
rection so that the solutions at the upper and lower periodic
boundaries could be directly equated. The simplicity in the
periodic boundary condition is achieved at the expense of
modifying the basic partial differential equations in the in-
terior of the computational domain. However, because of the
characteristics of the Euler equations, the inclination angle
of the computational plane was restricted to a range of phase
angles. For conditions outside this range, Giles had to use
multipassage conditions, which again consumed more com-
puter time and storage.

To avoid the large computer time or memory requirements
of the above noted methods, He9 assumed a Fourier series
expansion at the periodic boundaries and then lagged the
boundary conditions by the interblade phase angle. In this
method, the Fourier coefficients of the response at the pe-
riodic boundaries are stored and continually updated. This is
more efficient in computer memory usage.than that of the
direct store method, which stores the entire time history at
the periodic boundary. Thus, this method shows tremendous
promise for conserving computer resources.

In this article, the unsteady periodic boundary conditions
for unsteady Euler models are investigated, including a var-
iation of the Fourier series lagged boundary condition origi-
nally proposed by He. The boundary conditions are imple-
mented on an expanded grid along the periodic boundary,
therefore, the periodic boundary is part of the interior solu-
tion. The two-dimensional unsteady Euler equations are solved
using a time-marching, flux-difference splitting scheme im-

plemented on a C-grid that is allowed to deform with the
airfoil motion, either torsional or translational. Predictions
for both flat plate and loaded airfoil cascades are then pre-
sented, with the oscillation amplitude, cascade geometry, and
interblade phase angles varied.

Mathematical Model
The inviscid flowfield computations are performed using

an implicit finite volume Euler scheme.10-11 The discretized
integral form of the time-dependent curvilinear Euler equa-
tions is obtained by integrating the partial differential equa-
tions over a computational volume with the center denoted
as (/, /), and changing the resulting volume integral to a sur-
face integral using the divergence theorem

(2)

where the central difference operators dm(9) = (*)m+\,2 —
(*)m-i/2> m ~ i? j imply that the flux vectors are evaluated at
the surfaces of a cell. The dissipation aspect of this scheme
is improved by a flux-difference split method for the residual
based on the solution of approximate Riemann problems with
Roe averaging at the cell faces. To obtain higher-order spatial
accuracy, a corrective flux is added with a total variational
diminishing scheme used to limit the interface flux. Excellent
results10-11 have been obtained by evaluating the residual term
with the flux-difference split method and the left-hand side
operator with the flux vector split scheme, which is approx-
imately factored into the product of two operators. The geo-
metric conservation law, which prevents spurious source terms
due to the motion of the grid, is satisfied resulting in a flow
solver that is third-order accurate spatially and second-order
accurate in time.10-11

The Euler numerical solution is implemented on an airfoil
cascade geometry (Fig. 1) by a computational C-grid. In par-
ticular, the numerical solution is obtained utilizing the de-
forming grid technique of Refs. 5 and 12 for zero and nonzero
interblade phase angles. The outer boundary of the C-grid is
defined by the user in the grid generation program GRAPE.13-14

The outer boundary remains fixed in space, with the deform-
ing grid technique used to locate the position of the airfoil.

Boundary Conditions
Solid Surface

The solid surface boundary conditions, f-g in Fig. 1, im-
plement zero pressure gradient conditions.15 These zero pres-
sure gradient boundary conditions are sufficient as long as the
grid near the surface is adequately resolved. The flow vari-
ables are averaged across the interface aft of the airfoil solid
surface to the exit, e-f and g-h in Fig. 1.

Inlet and Exit
Characteristic variable boundary conditions (CVBC) are

used for proper transmission of information into and out,
b-c and d-e, h-a, respectively in Fig. 1, of the steady com-
putational domain. The CVBCs are consistent with the con-
cept of upwinding in which the signs of the characteristic
velocities determine the appropriate propagation directions.15

Note that CVBCs are only valid for steady cascade flows
because the exit boundary is assumed to have uniform static
pressure.

Approximate nonreflecting unsteady inlet and exit bound-
ary conditions are developed by assuming that linear theory
can be applied. Giles16 derived nonreflecting boundary con-
ditions for a general turbomachinery Euler solver. First, the
steady flow is solved using the CVBCs. The linearized Euler
equations are then solved at the inlet and exit boundary as-
suming locally one-dimensional flow to determine the per-
turbation flow variables in terms of the characteristic varia-
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bles. This allows time variations of static pressure at the exit
and reduces reflections from the boundaries.

Fourier Periodic
To minimize the large computer time or memory require-

ments associated with implementing the periodic boundary
conditions for nonzero interblade phase angle values, the flow
variables at the periodic boundaries are approximately ex-
pressed as a Fourier series.9 This is accomplished by expand-
ing the computational grid one node at the upper and lower
periodic boundaries (Fig. 1). At one node interior of the up-
per and lower periodic boundaries, timewise integration us-
ing rectangular rule quadrature for the Fourier coefficients
are performed on the conservative variables /(z, t) [p(x, t),
pu(x, i), etc.] at the lower and upper boundaries:

Lower boundary

A"L(x) = -

Bl(x) = -

Upper boundary

- 2
77 n=\

(3a)

(3b)

(3c)

(3d)

analysis is then run until a periodic solution is achieved, which
is defined by a constant unsteady moment and lift coefficient
for successive periods.

Results
In this article, the unsteady periodic boundary conditions

for unsteady Euler models are investigated. The two-dimen-
sional unsteady Euler equations are solved for a cascade ge-
ometry (Fig. 1) using a time-marching, flux-difference split-
ting scheme implemented on a C-grid that is allowed to deform
with the airfoil motion, either torsional or translational. Pre-
dictions for both flat plate and loaded oscillating airfoil cas-
cades are presented, with the oscillation amplitude, cascade
geometry, and interblade phase angles varied.

Flat Plate Results
To validate the Euler solutions, the unsteady flow past an

oscillating flat plate cascade is analyzed and compared with
linear theory predictions. The cascade consists of flat plates
staggered at 45 deg with a solidity of 1.0. The inlet Mach
number is 0.7 and the mean flow incidence angle is zero. A
finite 1% thick, rounded nose airfoil is used to approximate
the flat plate airfoils. A 145 x 28 C-grid is extended 0.95
chords upstream of the leading edge and 1.0 chords down-
stream of the trailing edge (Fig. 2a). Initially, the flow vari-
ables are set equal to the previously determined steady-state
values. Then the airfoils oscillate for a number of cycles suffi-
cient to achieve a periodic unsteady solution. The airfoil sur-
face unsteady pressures for the last cycle of oscillation are
then Fourier decomposed to determine the first harmonic
unsteady pressure distribution.

The solutions at the overlapped nodes for the lower and
upper periodic boundaries are then found by an N term
timewise Fourier series for the conservative variables /(#, f)

(X, 0 = f°u-i(x)
n = l

B"L(x)cos[n(a)t - a)]}

Bn
u(x)cos[n(cot + a-)]}

{Al(x)sin[n(a>t - or)]

a)]

(4a)

(4b)

where /° is the time-averaged value of /.
The implementation procedure for Eqs. (3) and (4) is to

first perform the timewise integration for the Fourier coef-
ficients at one node interior to the periodic boundaries. This
is an interior solution from the flow solver. The current so-
lution at the expanded nodes is then calculated using the
Fourier coefficients from the previous time period and Eq.
(4). After each period of integration, new values of the coef-
ficients are obtained from Eq. (3). Then the coefficients in
Eq. (4) are updated by the new values obtained. To accelerate
convergence to a periodic solution, the coefficients and time-
averaged values are updated five times per period of oscil-
lation.

In this method, the Fourier coefficients of the response at
the periodic boundaries are stored and continually updated.
This is more efficient in computer memory usage than that
of the direct store method that stores the entire time history
at the periodic boundary.

To obtain coefficients for the first period of oscillation, a
zero interblade phase angle configuration is analyzed with the
coefficients calculated on the upper and lower boundaries and
stored. For a nonzero interblade phase angle, the zero phase
angle coefficients are used only for the first period with the
appropriate nonzero interblade phase angle then applied. The

a)

b)

Fig. 2 Computational grids: a) flat plate and b) 10th standard con-
figuration.
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Fig. 3 Flat plate cascade unsteady pressure difference. M = 0.7,
k = 0.75, f = 45 deg, a = 0 deg, p/P0 = 0.721, ht = 0.01, CIS
= 1.0, v = 90 deg.

Figure 3 shows the magnitude and phase of the airfoil sur-
face unsteady pressure response to a 1% chord translational
motion at an interblade phase angle of 90 deg and a A; of 0.75.
The predictions of the Euler solver using the stacked and
Fourier periodic boundary conditions (four harmonics) are
shown. There is no difference in the response for either of
the two Euler periodic boundary conditions. Excellent agree-
ment of the unsteady pressure magnitude between the Euler
predictions and the linear theory analysis of Whitehead1 is
evident. The phase distributions are also in good agreement
with the linear theory predictions. From 20 to 80% chord,
the Euler solver predicts a slightly higher phase angle. The
large jump in phase at the trailing edge is a result of the
unsteady pressure difference magnitude approaching zero,
thereby making any slight difference in the unsteady pressure
appear large.
* The computational time for the Fourier periodic boundary
condition analysis, which required seven cycles of oscillation
to converge, was 5 CPU h vs 11 CPU h on a HP-730 work-
station for the stacked periodic boundary condition, which
converged in four oscillations.

10th Standard Configuration
To demonstrate the Fourier periodic boundary conditions

for subsonic flow, a loaded airfoil cascade was analyzed. The
10th standard configuration17 is a cascade of modified cam-
bered NACA 0006 airfoils at 45-deg stagger, 10-deg angle of
attack, with a solidity of 1.0. The unsteady cascade flow gen-
erated by translational motion is analyzed.

A grid convergence study was conducted to verify grid in-
dependent results. Figure 4 shows the unsteady magnitude
and phase pressure response of the 10th standard configu-
ration cascade oscillating with a 0.75 reduced frequency value,
a freestream Mach number of 0.7, and a 0-deg interblade
phase angle executing translational motion for two grid stud-
ies. The first study addresses the grid density independence.
Both C-grids extend 0.92 chords upstream and 0.7 chords
downstream, with 157 x 22 and 313 x 40 grid points re-
spectively. As shown in Fig. 4, there is no difference in the
results. Thus, the coarser grid (Fig. 2b) is considered ade-
quate.

157x22 grid
—D- 313x40 grid
- ^- 289x31 grid

*

90 -

0 -

-90 -

-180 —I—
0.2 0.4 0.6

Chord Location
0.8

Fig. 4 Grid effect on 10th standard configuration unsteady pressure
difference. M = 0.7, k = 0.75, f = 45 deg, a = 10 deg, p/P0 =
0.87, /*, = 0.01, CIS = 1.0, v = 0 deg.
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Fig. 5 10th standard configuration unsteady pressure difference.
M = 0.7, k = 0.75, £ = 45 deg, a = 10 deg, p/P0 = 0.87, h^ =
0.01, CIS = 1.0, cr = -45 deg.

The second study is performed to determine grid inde-
pendence from effects at the inlet and exit plane. The C-grid
was extended to 1.5 chords upstream of the leading-edge plane
and to 2.0 chords downstream of the trailing-edge plane with
289 x 31 points in the grid. The same subsonic translational
zero interblade phase angle configuration was analyzed. Note
that this is a super-resonant cascade flow configuration, with
planar propagating waves generated. For a super-resonant
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cascade, acoustic waves do not decay as they propagate away
from the oscillating cascade. Therefore, a super resonance
condition should be the most sensitive to the inlet and exit
location. The results are also shown in Fig. 4. No boundary
reflection problem is evident, although for nonplanar waves
a reflection may occur. Therefore, the smaller grid is utilized.

The subsonic 10th standard configuration cascade airfoil
surface unsteady pressure difference magnitude and phase
response to a translational motion of 1% chord at an inter-
blade phase angle of —45 deg is shown in Fig. 5. Both the
Fourier and stacked periodic boundary conditions results are
shown, along with the linear flat plate theory analysis of
Whitehead.1 The two nonlinear analysis results are identical
in both magnitude and phase. The magnitude of the Euler
unsteady response is three times higher near the leading edge,
with the difference decreasing until the Euler and linear so-
lutions agree at the trailing edge. The phase results show that

1.000 -

Lift

.920 -

.840
40.

Time (sec)

Fig. 6 Lift time history.

80.

the Euler and linear solutions have the same trendwise be-
havior, but are offset by 90 deg.

The time history of the unsteady lift for the Fourier periodic
boundary condition Euler analysis is shown in Fig. 6. This
plot shows that the solution has reached a periodic state after
12 periods of oscillation. This takes 6.4 CPU h on the HP-
730, whereas the stacked analysis reached a periodic state in
4 periods taking 16.5 CPU h. The Fourier periodic boundary
condition analysis probably takes longer to reach a periodic
state because the boundary conditions are lagged in time,
whereas the stacked boundary conditions are not.

The importance of the number of harmonics in the Fourier
periodic boundary conditions is shown in Fig. 7. The mag-
nitude of the first eight harmonics of the conservative variable
pu normalized by the first harmonic from the stacked analysis
is shown for five different node locations along the periodic
boundary. The Fourier periodic boundary conditions were
used, with both the first and the first four harmonics used to
determine the solution at the periodic boundary. The mag-
nitude of the harmonics do not change whether the first or
the first four terms are kept, i,e., the periodic boundary so-
lution is dominated by the first harmonic.

Transonic Cascade
To demonstrate the Fourier periodic boundary conditions

for transonic flow, a cascade configuration with a strong nor-
mal shock was analyzed. The 10th standard configuration ge-
ometry was used with a freestream Mach number of 0.8. The
back pressure was reduced to 0.7, resulting in a strong shock
wave completely across the flow passage. The number of grid
points in the streamwise direction was increased to 223 to
better resolve the shock wave, but no grid refining near the
shock was done.

The flowfield static pressure contours are presented in Fig.
8. showing that the normal shock extends completely across
the blade passage. The steady pressure distribution on the
suction and pressure surfaces of the cascade are given in Fig.
9. The shock starts at 92% chord on the suction surface and
intersects the pressure surface at 25% chord.

The cascade is then oscillated in a torsional mode about
the midchord with a -90-deg interblade phase angle. The

n Fourier-1 Harmonic
o Fourier-4 Harmonics
x Stacked BC

i = 155

*——* i-140

-J»——•—•—•—ft—I U125

0 1 2 3
Fourier Series Harmonic Number

g 8 9 g i-96

Fig. 7 Normalized pu Fourier series harmonic amplitudes. M = 0.7, k = 0.75, £ = 45 deg, a = 10 deg, p/P0 = 0.87, hv - 0.01, CIS = 1.0,
a = — 45 deg.
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Fig. 8 10th standard configuration static pressure contours.
M = 0.8, f = 45 deg, a = 10 deg, CIS = 1.0, p/P0 = 0.7.

0.2 0.4 0.6

Chord Location

Fig. 9 10th standard configuration steady pressure distribution.
M = 0.8, ( = 45 deg, a = 10 deg, CIS = 1.0, p/P0 = 0.7.
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Fig. 10 Unsteady moment coefficient vs amplitude of oscillation.
M = 0.8, k = 0.75, ( = 45 deg, a = 10 deg, p/P0 = 0.7, CIS =
1.0, or = -90 deg.

amplitude of the airfoil oscillation is varied from 0.1 to 3.5
deg. The magnitude of the unsteady moment coefficient from
the 0.1- and 0.2-deg oscillations are extrapolated for the "lin-
ear" solution. The unsteady moment coefficient is then plot-
ted vs the amplitude of oscillation (Fig. 10). Nonlinear effects
are evident for oscillation amplitudes greater than 1.0 deg.
This result agrees with studies on nonlinear cascade effects
reported in Ref. 18.
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Fig. 11 10th standard configuration unsteady pressure difference. M
= 0.8, k = 0.75, f = 45 deg, a = 10 deg, p/P0 = 0.7, a, = 3.5
deg, CIS = 1.0, <r = -90 deg.

——— Stacked
— — 1 Harmonic
- - - - - 6 Harmonics

135 140 155145 150
Time (sec)

Fig. 12 Time trace of conservative variables at periodic boundary.
M = 0.8, k = 0.75, f = 45 deg, a = 10 deg, p/P0 = 0.7, at = 3.5
deg, CIS - 1.0, cr = -90 deg.
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Fig. 13 Normalized pu Fourier series harmonic amplitudes. M = 0.8, k = 0.75, f = 45 deg, a = 10 deg, p/P0 = 0.7, a^ = 3.5 deg, CIS =
1.0, a = -90 deg.

Figure 11 shows the airfoil surface unsteady pressure mag-
nitude and phase results for an oscillation amplitude of 3.5
deg for both the stacked and Fourier periodic boundary con-
ditions, with the first six harmonics used for the Fourier method.
The unsteady magnitude and phase pressure response are
identical for both methods. The strong normal shock is seen
in both the magnitude and phase plots at 25 and 92% chord,
with this nonlinear behavior able to be calculated with the
Fourier periodic method. The CPU time was 147.0 and 238.8
h on the HP-730 for the Fourier and stacked periodic bound-
ary conditions, respectively, with 35 and 15 periods of oscil-
lation required to reach a periodic solution.

To investigate the Fourier periodic boundary condition so-
lution in more detail, the time history of the conservative
variables p and pu, one node in from the periodic boundary
at the shock wave location, are plotted in Fig. 12 for both the
stacked periodic boundary condition and for the prediction
with both the first and the first six harmonics of the Fourier
periodic boundary condition method. Only the last four pe-
riods of oscillation are plotted to give better resolution. Al-
though the first harmonic alone boundary condition does re-
markably well, using the first six harmonics in the boundary
condition yields a solution that is nearly identical to that with
the stacked airfoils.

The magnitude of the first eight Fourier coefficients one
node in from the periodic boundary for the conservative var-
iable pu at the normal shock location, and for the two nodes
upstream and downstream of the shock location, are shown
in Fig. 13. Note, these plots are for an internal node point,
thus higher harmonic terms result. Nearly exact agreement
between the solution with the stacked and Fourier periodic
boundary condition using the first six terms result. However,
it is evident that using only the first term in the boundary
condition does not maintain the higher harmonic effect at the
flowfield periodic boundary. This figure also emphasizes the
validity of only keeping the first six harmonics of the boundary
condition, as the higher harmonics are quite small. These
results validate that the Fourier periodic boundary conditions
preserve the nonlinear behavior of the flow solver.

CPU Time
The CPU time penalty due to the timewise integrations for

the first six harmonics of the Fourier series along the periodic
boundaries for a single passage was 2.7 min or 5.6% of the
48.5 min required for one period of oscillation of a transonic
10th standard configuration for a zero interblade phase angle
analysis with overlapping of the grid. The number of oscil-
lations needed to reach a periodic solution was usually double
that needed for the stacked periodic boundary conditions.
Therefore, depending on the interblade phase angle, the sav-
ings in CPU time can be enormous. Also, any arbitrary in-
terblade phase angle can easily be analyzed. The penalty in
terms of memory requirements for a particular cascade flow-
field analysis was approximately 3.0% of the stacked bound-
ary condition. This should not pose any problem for most
modern computers.

Summary and Conclusions
An investigation of the unsteady aerodynamics associated

with an oscillating cascade of airfoils has been completed using
a time-marching, flux-difference splitting Euler code imple-
mented on a deforming C-grid. The flow solver, which is
second-order accurate in time and third-order accurate spa-
tially, was first verified by analyzing a flat plate cascade and
comparing the results with linear theory. This showed excel-
lent agreement with the linear theory predictions, thus vali-
dating the flow solver. The 10th standard cascade configu-
ration was then analyzed. As expected, these predictions showed
effects that the linear theory could not predict, and they showed
the usefulness of applying the Fourier periodic boundary con-
ditions in saving computer resources. To prove the nonlinear
validity of the Fourier periodic boundary conditions, a tran-
sonic cascade configuration with a strong normal shock wave
and high magnitudes of torsional blade oscillation was studied.
These results proved the nonlinear behavior of the Fourier
periodic boundary conditions.

The conclusion of this research into the nonlinear unsteady
aerodynamics of a cascade of airfoils undergoing both trans-
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lational and torsional oscillation is that applying a Fourier
periodic boundary condition is valid. This periodic boundary
condition has been demonstrated to model the nonlinear be-
havior of the flowfield while greatly reducing the computer
resources in both time and memory requirements over other
methods.
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