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Comment on "Relationships for Motor
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R EFERENCE 1 presents an analysis of motor tempera-
ture sensitivity relations that concludes (n — [d />, rid & p]T)

(Reference 1 nomenclature is employed, and equations and
figures are numbered to correspond with it):

d /;, c dn\
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is generally applicable whereas

TTK = 1 - n (5)

is limited to situations where n is not a function of pressure.
However, Ref. 2 showed Eq. (5) applies to any smooth r(p,
T), and Refs. 3 and 4 proved Eqs. (5) and (10) are algebraic
identities of equal generality. Since Ref. 1 did not address
these previous works and Refs. 1 and 4 reach opposite con-
clusions, which is correct? The objective of this Technical
Comment is to examine this situation in detail from Ref. 1's
perspective and resolve this question.

Equating Eqs. (10) and (11) shows the requirement for
equality to be

„_,07)
Reference 1 claims this requires equality of the derivatives
with common dependent variables, viz.
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However, since n = n(p, T) and c = c(p, T) > 0
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Table 1 Variable exponent example (r = cpn}

/„ r = /„ T + (0.3 + 0.01 &p)
n = 0.3 + 0.02 /;,/?, (TP = l/T
t«c = & T - 0.01 (/»pY

Derivatives
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Fig. 3 Sketch illustrating n(p, T) and n(T} situations.

Substituting Eq. (18) into Eq. (17) reduces it to
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Restating Eq. (6) as f» r = ti< c + n /» p and differentiating
with respect to /;/ p gives

+ n + &
dn = n (20)

^ }

Comparison of Eqs. (19) and (20) shows that Eq. (17) is
unrestricted and that Eq. (12) is not necessary. Moreover,
Eq. (12) will generally be incorrect in variable exponent sit-
uations.

Table 1 presents a simple variable exponent example. The
results show the following in turn — Eq. (17) is correct, Eq.
(12) is incorrect for both differential and finite difference
forms [Equation (12) equates mean and local sensitivities
thereby requiring constant local sensitivities], and Eqs. (5)
and (10) are identical. Since n = n(p)7 Ref. 1's conclusion is
clearly incorrect.

Reference 1's formal derivation of Eqs. (15) and (16) equates
differential and finite difference ITK. Since this requires &TTK
= 0 along the dK = 0 path, Eqs. (15) and (16) are restricted
by their derivation to essentially dn = dap = 0 situations.
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However, quasisteady mass conservation at states A(Tl, K)
and B(T2, K) requires

r n"Br*CBP B C B PB
PA

(21)

and algebraic rearrangement gives the unrestricted equation
for mean TTK (effectively achieved first by Ref. 5)

- nB T2 - T, T2-
(22)

Comparison of Eqs. (15), (16), and (22)6 shows they have
identical form when the initial and final state subscripts cor-
respond. Therefore, the restricted and unrestricted equations
are algebraic identities.

Figure 3 illustrates this situation graphically. The figure
shows r(p, 7\), r(/?, T2), a dK — 0 line, and tangents to the
burning rate relations at states A and B (nA, nB). Identical
TTK are obtained from either the n(p, T) or n(T) result rep-
resented by the tangents, because HrK is solely a function of
the end states. Figure 2 illustrates the identical situation for
Eqs. (15) and (16).6

In summary, Ref. 1 effectively constrained their mathe-
matics to fit their expectations of Eq. (5) and found results
that matched the expectations, but not reality.
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