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Design of Axisymmetric Channels with Rotational Flow

M. Koumandakis,* V. Dedoussis, T P. Chaviaropoulos,} and K. D. Papailiou$
National Technical University of Athens, 157 10 Athens, Greece

The purpose of this article is to present an inverse subsonic inviscid methoed for the design of axisymmetric
channels, with rotational flow. The rotational character of the flow is due to prescribed total enthalpy, entropy,
and/or swirl gradients along the inlet of the channel. The method is based on a potential function/stream function
formulation. The Clebsch transformation is employed to decompose the meridional velocity vector into a potential
and a rotational part. The rotational part is shown to be proportional to the total enthalpy gradient, the coefficient
of proportionality being the drift function. A body-fitted coordinate transformation is employed to map the
sought boundaries on the (¢, ) space. The governing equation for the magnitude of the meridional velocity
component is derived by treating the inverse problem on the (¢, ) space as a purely geometric one, employing
differential geometry principles. The (meridional) velocity equation is coupled in a nonlinear manner with a
transport equation for the drift function and with the geometry via the radial coordinate. The integration of
the governing equations is performed on an auxiliary computational grid using a simple iterative scheme. The
geometry, in particular, is determined by integrating Frenet equations along the grid lines. The present design
method has been applied successfully to the ‘‘reproduction’’ of two ‘‘real-life’” geometries concerning the annular

duct of a two-stage axial compressor as well as a radial one.

Nomenclature

velocity Eq. (24) coefficients

specific heats

metrics tensor of computational (¢, )
coordinate system

conjugate metrics tensor of natural
(¢, ¥) coordinate system
contravariant base vector of natural
(¢, ¥) coordinate system

enthalpy

unit base vector in the peripheral
direction

position vector

Mach number

entropy

temperature

velocity vector

meridional plane (physical) Cartesian
coordinate system

a drift function

ay, o, a, Clebsch decomposition coefficients
associated with enthalpy, entropy, and
swirl gradients

angle between V¢, V¢

Christoffel symbol of second kind
specific heats ratio

X = angle between 11 = const lines and
axis of channel, x axis

signed curvature of 7 = const lines
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A = entropy gradient coefficient

7 = swirl gradient coefficient

& n) = orthogonal computational coordinate
' system

p = density

p(=rp) = modified density

(¢, ¥) = potential function, stream function

~ natural coordinate system

Q = vorticity vector

Subscripts

i,j,I,q (=1,2) = covariant tensor indices

m = meridional component

0 = known position indicator

ref = reference quantity

t = total quantity

u = peripheral component

En b, ¥ = partial derivatives with respect to

&m, b0ty
Superscripts
i,j,1,q (=1,2) = contravariant tensor indices

Introduction

CENTRAL issue in applied aerodynamics is the problem

of determining the shape of the walls of an aerodynamic
component on which the pressure (or velocity in inviscid flows)
distribution is prescribed. This inverse problem is usually re-
ferred to as the “target pressure” one. Over the years quite
a few methods have been developed for its solution. First
attempts addressed the design of airfoils in incompressible
potential flows using analytical conformal mapping tech-
niques.! The cornerstone, however, of inverse approaches is
the method developed by Stanitz? in which the governing
equations are transformed employing the potential function
¢ and the stream function ¢ as “natural” body-fitted coor-
dinates. The method is very robust because it exploits the fact
that solid boundaries are streamlines, which implicitly defines
the domain of integration of the unknown, sought, geometry
on the (¢, ¢) space. The method of Stanitz was originally
proposed for the design of two-dimensional channels with
either incompressible or compressible (subsonic) potential flow.
Due to its flexibility, Stanitz’s approach was extended to the
design of axisymmetric internal flow configurations,* turbo-
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machinery planar and axisymmetric nonrotating or rotating
blading,* ¢ and to isolated airfoils.”

During the last decade solution of the target pressure prob-
lem and its variants, where additional desirable design char-
acteristics, incorporated as “flow or geometry constraints,”
may be prescribed, is tackled by coupling aerodynamic anal-
ysis tools with numerical optimization (minimization) schemes.
These methods provide the design geometry via an iteration
loop between the analysis, direct, problem solution, and the
appropriate update of the judiciously guessed geometry. De-
pending on the governing equations solved by the analysis
code (e.g., full potential, Euler or Navier-Stokes), ‘“‘opti-
mum” design configurations for potential,® rotational,® or vis-
cous flow,!° respectively, are achieved. Although the speed
of computation has increased enormously, numerical optimi-
zation techniques are still much more expensive (but more
flexible) than the traditional potential/stream function inverse
design formulations. To the benefit of the latter approach is
that, through the utilization of natural coordinates, it enables
the treatment of the inverse problem as a geometrical problem
rather than a flow one. This provides a better insight and
theoretical understanding of the inverse design problem as
such.!!'2 Exhaustive presentation of the advantages and dis-
advantages of various design methods is beyond the scope of
the present work. Complete discussion of acrodynamic shape
design methods can be found in the review papers of Labru-
jere and Slooff'® and Dulikravich.*

Potential/stream function inverse methods were developed
for potential flows only. Rotational flows have received only
limited attention mainly because of the breakdown of the
concept of the potential function. The difficulty can be cir-
cumvented using the Clebsch formulation' to decompose the
velocity vector into a gradient-type ‘‘potential” part and an-
other rotational part. The present authors!® used this tech-
nique to solve the rotational two-dimensional inverse problem
for internal flow configurations. In this article, our previous
work is extended to the design of axisymmetric channels with
highly rotational flows. The rotational character of the (me-
ridional plane) flow is due to total enthalpy, entropy, and/or
swirl level variations of the different streamlines. Such flow
conditions are usually encountered in turbomachine compo-
nents downstream of highly loaded rotors. The efficient design
of such components results in improved overall performance
of the machine.

Unlike other axisymmetric inverse methods,*'” where gov-
erning equations are derived by manipulating the basic flow
equations themselves, in our method the equation for the
magnitude of the meridional velocity component is derived
using the defining relations of the potential and the stream
function, and employing differential geometry principles for
the mapping-transformation of the physical (x, r) space on
the natural (¢, ) space. This nonlinear partial differential
equation (PDE) for the meridional velocity is solved in con-
junction with a transport equation for the “drift function”
(the sum of the rotational character scalar coefficients in-
volved in the Clebsch decomposition). A difficulty inherently
associated with axisymmetric flow conditions is that the ve-
locity equation is coupled with the radial physical coordinate.
This implies that the flow and geometry calculations are cou-
pled. For potential flows only, the present authors were able
to avoid the flow-geometry calculations coupling, by treating
the axisymmetric design problem as a particular case of the
genuinely three-dimensional one.!!

In the present work the numerical integration of the equa-
tions is carried out on an auxiliary (£, n) computational do-
main, with = const lines coinciding with meridional stream-
lines. Prescribed meridional velocity distribution along the
solid walls, instead of the target pressure, as well as prescribed
inflow kinematic and thermodynamic properties are used as
boundary conditions. The geometry of the duct is determined
through the integration of Frenet equations along the com-
putational grid lines.

To validate the method calculations for two “real-life”” axi-
symmetric annular ducts were carried out. The favorable com-
parisons between inverse results and those of a direct analysis
code, indicate the reliability of the method.

Assumptions and Basic Equations

The design method proposed in this article concerns steady,
subsonic, inviscid, and adiabatic duct flows of a perfect gas
with axial symmetry. Although gradients in the peripheral
direction vanish, nonzero peripheral velocity component V,,
is assumed. The entropy as well as the total enthalpy level of
different stream surfaces (or meridional plane streamlines)
may be different.

Under those assumptions the conservation laws of fluid
mechanics read

Continuity equation

V. (pV,) = 0 )
Momentum equation

Meridional (x, r) plane component

Vo x Q, = V,h = TV,5 — (V)V,(V.) (2

Peripheral component
V'V, (rV,) =0 (3)
Energy equation
Vv, V,h =0 (4)

where subscript m denotes properties on the meridional plane,
whereas subscript 4 denotes properties along the peripheral
direction.

Rearranging Eq. (2) and taking into account Egs. (3) and
(4), we get the entropy conservation law:

V,V,.s=0 5)

The above system of equations is supplemented by the fol-
lowing density equation:

(p/pref 1= (h/href)exp{_[(s - sref)/cv]} (6)
where subscript ref denotes reference conditions, and vy is the
ratio of specific heats c,/c,.

The perfect gas assumption implies that the enthalpy is

proportional to the temperature, i.e., dh = ¢, dT. It is also
noted that the total (stagnation) enthalpy is defined as

h,=h+ 3(V% + V2 @)

Potential-Type/Stream Function Formulation
The purpose of this section is to present and discuss the
natural, potential stream function coordinates employed in
the present inverse design method.

Stream Function
A stream function on the meridional plane is used that is
defined as
W, =V xk p=rp ®)
As usual, the stream function is defined in such a way so that

the continuity Eq. (1) is satisfied identically. The definition
of the stream function in axisymmetric flows is analogous to
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the usual two-dimensional one, with the exception that the
density is replaced by the term 4.

Clebsch Formulation

Clebsch formulation®’ is used to decompose the meridional
velocity vector to an irrotational and a rotational part. The
rotational part is expressed as a linear combination of V, A,,
v,s, and V,(rV,), which are responsible for the rotational
character of the flow (peripheral vorticity component).

The Clebsch decomposition of the meridional velocity vec-
tor reads

V,=V, b+ aV, h + aV,s+ aV,. V) (9)

where ¢ is the meridional plane potential function.
Equations (3—5) indicate that V,A,, V,s, and V,,(rV,), being
normal to V,,, are parallel with one another. Assuming that
the total enthalpy is a primary variable, the effect of the

entropy and swirl gradients can be expressed as

V.s = AV_h, (10)
V,(rV.) = pV,.h (11)

Applying the meridional curl operator on Eqs. (10) and
(11) it is seen that

VA X V,h =0 (12)
Vo X Vb =0 (13)

Therefore, V,,A and V, u being parallel to V, A, are both
normal to the meridional streamlines, i.e.,

V., V.A

0 (14)
V, V=0 (15)

Transport Eqs. (14) and (15) simply state that A and u are
conserved along, i.e., remain constant on, the meridional
plane streamlines.

Using Egs. (10) and (11), Eq. (9) is written equivalently as

V,=V, b+ aV, h (16)
The coefficient «
a=q, + oA + au a7

Introducing Eqgs. (10), (11), and (16) into the meridional
momentum Eq. (2), and using the defining relation for the
peripheral vorticity component, i.e., &, = V,, X V,, the
following transport equation for the drift function is derived:

V., Va=Tx+ V,/)u -1 (18)

Natural (¢b, ) Curvilinear Coordinate System
The potential function and the stream function, i.e., the
natural coordinates, on the meridional plane, are considered
to be the independent variables. The defining Eqs. (8) and
(16) provide the contravariant base of the (¢, ) coordinate
system. Associating coordinate indices 1 and 2 with the ¢ and

¥ coordinates, respectively, the contravariant base reads

gl = Vm¢ = Vm - avmht (19)
2=V, =kxpv, (20)
The dot product V,, ¢ -V, ¢ is definitely nonzero since both

V,.h, and V, ¢ are normal to V,, [refer to Eqs. (4) and (8),
respectively]. This indicates that, unlike irrotational flow, in

the present rotational one the (¢, ¢) coordinate system is
nonorthogonal. ,

The conjugate (contravariant) metrics of the (¢, ¢) system,
which actually define the body-fitted physical (x, r) space to
the natural (¢, ¢) space transformation, are evaluated via the
defining relations and Eqs. (19) and (20) as follows:

gl=gl"g' = V2 + |V, h)? = (V25sin’B) (21)
g7 = FF = (V. @)
g¥ =g =g"g = —opV,|V,h| = (pV}/tan B) (23)

Noting that 4, is constant along the streamlines [see Eq. (4)],
Eq. (23) provides the following expression for the coordinate
angle:

tan B = —(Vap(h,),) (24)

Governing Equations

The equations that are actually solved by the present inverse
method are presented in this section.

Velocity Equation

An equation for the magnitude of the meridional velocity
component is obtained from the zero-curvature metrics com-
patibility condition, which has to be satisfied by any param-
etrization of the physical space, including the (¢, ) natural
coordinates one. This procedure, which treats the inverse
problem as a geometrical rather than a flow one, proved to
be quite efficient in several inverse design applications in
two”-1¢ and three dimensions.!!-18

From the analysis presented in the previous section it is
observed that in the present axisymmetric formulation the
metrics expressions are entirely analogous to those of the two-
dimensional one, with the only exception being that the ther-
modynamic density has to be replaced by the modified density
function p (=rp). The relevant meridional velocity equation,
therefore, is identical to the two-dimensional velocity equa-
tion,'¢ provided that p is replaced by §. Thus

ate V) g + b6 Vo)ow + €l Vo)
+d V), + et V), = f (25)
where
a(p, B) = (1/sin’B)
b(p, By = (2p/tan B)
«p, B) = p*
d(p, B) = —(1sin’B)[( p)gy + B, + (2/tan B)B,]
(b, B) = p* p)y — (plsin’B)B,

1 5 P
£, B) = =55 6 Do = g D)o + B
X | @py + 5B, + : B :
Pt B+ g Pe| T G ran g P
5 25 2eoB+ 1 0
“ B Pt sB e B PP T T B (Bs)

The nonlinear elliptic type second-order PDE for the me-
ridional velocity component V,,, Eq. (25), is the main gov-
erning equation of the flowfield. For irrotational axisymmetric
flows, where potential lines are normal to the streamlines on
the meridional plane, i.e., 8 = 90 deg, Eq. (25) is identical



732 KOUMANDAKIS ET AL.: AXISYMMETRIC CHANNELS WITH ROTATIONAL FLOW

to those of Stanitz'” and Nelson and Yang? for compressible
and incompressible flows, respectively.

The coefficients of Eq. (25) are functions of p and B. The
function g defined as the product of the thermodynamic den-
sity p, and the radial coordinate r is a function of the (un-
known) design geometry sought. This implies that in contrast
to the two-dimensional case, the flow and geometry solution
procedures cannot be separated and carried out in an inde-
pendent manner. The need of treating the axisymmetric in-
verse design problem as a coupled flowfield-geometry prob-
lem is evident.

To close the design problem one has to provide equations
for p (or for p), for the geometry (r coordinate) and for .
The thermodynamic density is evaluated using Eq. (6), whereas
the coordinate angle is evaluated in terms of the drift function
using Eq. (24).

Transport Equation for the Drift Function

The drift function is calculated from the transport Eq. (18).
In the (¢, ¥) coordinate system this transport equation be-
comes

Vie,=Tr + (V,/Nup — 1 (26)

It is interesting to note that the drift function Eq. (26) is also
coupled to the geometry. This coupling is both implicit and
explicit. Equation (26) is implicitly coupled to the geometry
solution via the meridional velocity field (which controls the
transport rate of the drift function), and explicitly via the
nonzero peripheral velocity term on its right side.

The total enthalpy as well as the entropy and the swirl are
prescribed at the inlet section as h, = h,(), s = s(¢) and
rv, = rV,(¢¥), implicitly setting the level of the rotational
character, peripheral vorticity, of the flow considered. Taking
also into account that 4,, s, and rV, are conserved along the
meridional streamlines, i.e., on ¢ = const lines [refer to Eqs.
(3-5)], it is concluded that 4,, s, and rV,, are known, set up
a priori, on the entire flow domain. The distributions A =
A(Yp) and p = u(yY) determined at the inlet via the defining
Egs. (10) and (11) of A and u as proportionality coefficients
between the parallel vectors Vs, V,.h, and V,,(*V,), V,.h,
respectively, are also known a priori throughout the flowfield,
simply because A and u are conserved on the meridional
streamlines. With the exception of the temperature [which is
related via Eq. (7) to the total enthalpy and velocity field]
and the radial coordinate, the right side of Eq. (26) represents
a known function of the ¢ coordinate.

Geometry Equations

In the previous section it has been emphasized that in the
axisymmetric case the flowfield and geometry solutions are
inherently coupled via the radial coordinate. The calculation
of the geometry as well as the integration of the flowfield
equations are carried out on an auxiliary computational (¢,
1) grid with n = const lines corresponding to the meridional
streamlines ¢ = const lines. {The (¢, ¥) domain of integration
and the (£, m) grid are discussed in the following sections. ]
The geometry of the axisymmetric channel, i.e., its typical
meridional section, is determined by integrating Frenet equa-
tions of 7 = const and/or ¢ = const lines in the physical
plane. In the case of (two-dimensional) meridional plane lines
the integration of Frenet equations, e.g., of 7 = const lines
(meridional streamlines), is simplified, giving the following
relations for their Cartesian coordinates x and 7, the axial and
radial distance of a point, respectively:

&

X, = x,, + f cos ®,VG,; d¢ 27
3
£

r=r,+ L sin ©,\/G,, dé¢ (28)

with ©,, given by

£

0, =0, + : K, VG d§ (29)

Relations analogous to Eqgs. (27-29) hold for the ¢ = const
lines.

In Eq. (29), , is the signed curvature of = const lines.
For the general nonorthogonal (£, n) coordinate system «; is

I'h
K = = [(T2)°G,, — [T —
1 Gllll—\%ll[( 11) 22 [ 11

o Gu),PGul? (30
where the Christoffel symbols and the metrics with capital
letters refer to the (£, ) coordinate system. The latter are
related to those of the (¢, ) system, implicitly defined by
the relations (21-24), through the following generalized ten-
sor transformation':

ax9 ox!

e

x'=¢, x2=y¢, X1=¢ x*=n) 31

withi,j,l,q = 1, 2.

In the above relation the g, metrics are related to the flow
quantities, whereas the dx9/9x’ derivatives are known func-
tions of the (¢, ¢) to (¢, n) coordinate transformation. By
definition, the Christoffel symbols are functions of the metrics
and their derivatives.

(¢, ¥») Domain of Integration
and Boundary Conditions

The inverse problem has a unique solution on the (¢, ¢)
plane provided that appropriate boundary conditions are
specified for the velocity (25), the drift function (26), and the
geometry Eqs. (27-29).

a is governed by the first-order ordinary differential Eq.
(26), for which initial boundary conditions are required along
the inlet section. «, which controls the size of tan B, i.e., the
local skewness of the (¢, ¢) coordinate system, is specified
as an arbitrary constant along the inlet section without af-
fecting the final flowfield solution. #,, s, and rV, distributions
are also prescribed along the inlet section, implicitly specifying
the level of the incoming (peripheral) vorticity as well as the
thermodynamic density.

Initial conditions are also required for the integration of
the geometry Eqs. (27-29). The (x,, r,) coordinates and the
corresponding ©,, angle are fixed at a preselected location.
For undisturbed inlet conditions @, is arbitrarily set to zero.

The velocity equation, being of elliptic type, requires
boundary conditions all around the integration domain. In
the design of axisymmetric annular channels (which concerns
the present work), the designer prescribes the meridional ve-
locity magnitude as a function of the solid walls arc lengths,
ie., V,, = V,(L). In both irrotational and rotational flows
the potential ¢ is related to the arc length L on the solid
wall (streamlines) via the relation d¢ = V, -dL. It is ob-
vious, therefore, that the prescribed V,, = V,,(L) distribution
corresponds to an easily obtainable V,, = V,,(¢) distribution,
where ¢ is determined to within an arbitrary constant. With-
out loss of generality the constant of integration for the inner
wall velocity distribution could be considered to be zero. On
the other hand, the constant of integration of the outer wall
velocity distribution is calculated by integrating along the inlet
the expression

dp = —a dh, (32)

Equation (32) is derived by requiring the dot product V,-dL,
dL being the infinitesimal vector tangential to the inlet sec-
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tion, to be zero. Namely, one requires the inlet section to be
normal to the (meridional) flow or to the streamlines, =
const lines.

The meridional velocity magnitude is also prescribed along
the inlet and outlet sections. On these sections the stream
function definition yields d¢y = pV,,-dL and, consequently,
V.. = V,.(). A trapezoidal (¢, ) domain of integration is
therefore defined, for which velocity boundary conditions of
Dirichlet type are prescribed on the complete boundary while
thermodynamic and geometric boundary conditions are spec-
ified on the inlet section.

In general, the inner and outer wall meridional velocity
distributions could be specified by the designer in an arbitrary
way. Specifying the shape of both the inlet and outlet sections
is in general incompatible with the defined (¢, ¢) domain of
integration. The designer may specify a desirable property
for the inlet section [see Eq. (32)], but should leave the outlet
section free to adjust itself to a shape compatible with both
the defined (¢, ) domain of integration and the calculated
flowfield. In the present work no desirable property is spec-
ified for the outlet section. The outlet section is simply as-
sumed to be a straight line on the (¢, ¢) plane.

Numerical Method

The defined (¢, ¢) domain of integration is discretized
assuming uniformly distributed ¢ = const lines. An auxiliary
numerical transformation® is employed that maps the trap-
ezoidal (¢, ) domain to a rectangular one with square unit
cells in a computational (£, i) plane. n = const lines corre-
spond to = const lines, i.e., ¢, = 0. Limiting values of
¢ = const family lines correspond to the inlet and outlet
sections. Within the iterative solution procedure the specified
(¢, ¥) domain of integration remains unchanged. It is noted
that if one specifies desirable geometric properties for both
the inlet and outlet sections, the (¢, ¢) domain of integration
and inevitably the (¢, ¥) to (£, ) mapping should be appro-
priately updated within the iterative solution procedure. The
latter strategy had been adopted in our previous work!¢ con-
cerning the design of two-dimensional ducts with rotational
flow.

The transformed governing Eqs. (25-29) form a set of non-
linear equations on the (¢, n) plane. Their numerical inte-
gration is carried out according to the following iterative scheme:

1) The velocity equation is linearized by assuming that the
p and B distributions are known from the previous iteration
level. Discretizing partial derivatives, employing central sec-
ond-order accurate differencing (in subsonic flows), a system
of algebraic equations with 9-diagonal banded nonsymmetric
characteristic matrix is obtained. This is solved using the mod-
ified strongly implicit procedure.?!

2) Once the meridional velocity field is determined, the
transport equation for the drift function is integrated along
streamlines (n = const lines) using a second-order accurate
Runge-Kutta scheme. The newly calculated a distribution
provides a better estimate for B, via Eq. (24). A better es-
timate for p is calculated from Eq. (6).

3) The geometry calculation is then performed by inte-
grating Eqs. (27-29). Computational experience showed that
inaccuracies associated with the error accumulation of the
geometry calculation are minimized, if one determines the
central streamline of the channel, = const line first, and
then starting from it, determines the inner and outer walls by
integrating along £ = const lines.

Iterations continue until velocity convergence is achieved.
Convergence is established within 10~7 tolerance for the
rms value of the velocity equation residual. Computational
experiments showed that underrelaxing the velocity solu-
tion with a relaxation factor of the order of 0.4-0.5 and
the geometry (r coordinate) with a relaxation factor of the order
of 0.1 was necessary to both achieve and accelerate conver-
gence.

Results and Discussion

The inverse design method proposed in this work has been
validated for irrotational and rotational flows in two “‘repro-
duction” calculations. The term reproduction is used in the
sense that, for a given geometry, a direct (analysis) code
provides the boundary meridional velocity distributions that
are then used by the inverse method to reproduce the original
shape. The direct code employed for these computations is a
reduced duct-flow version of a (¢, w) meridional code.??

Computational results for two “real-life” geometries, cor-
responding to the (nonbladed) annular duct of a two-stage
axial compressor® and the duct of a radial compressor® are
presented here. In both cases duct-flow computations were
performed for subsonic irrotational and rotational flow con-
ditions. The rotationality of the flow, when present, is due to
a linear inlet meridional velocity profile, which in conjunction
with the assumed uniform temperature and pressure profiles
produces a compatible nonuniform total (stagnation) enthalpy

Fig. 1 Mach contours of inverse ( ) and direct (---) method of
axial compressor duct with irrotational flow (M, = 0.135, AM =
0.015).

Fig. 2 Mach contours of inverse ( ) and direct (---) method of
axial compressor duct with rotational flow (M _,, = 0.105, AM =
0.015).
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Fig. 3 Inner and outer wall geometries of axial compressor duct with
rotational flow.
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Fig.4 Calculated grid of axial compressor duct with irrotational flow.
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Fig. 5 Mach contours of inverse ( ) and direct (---) method of
radial compressor duct with irrotational flow (M, = 0.15, AM =
0.015).

Fig. 6 Mach contours of inverse ( ) and direct (---) method of
axial compressor duct with rotational flow (M, ,, = 0.12, AM = 0.015).
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Fig. 7 Inner and outer wall geometries of radial compressor duct
with rotational flow.

distribution. The inlet velocity variation was of the order of
30% and 10% for the axial and radial cases, respectively. For
flow uniformity reasons, both geometries have been extended
upstream and downstream. A 126 X 30 grid was used in both
direct and inverse computations for the axial compressor duct,
whereas a 70 X 20 grid was used for the radial compressor
case. All inverse computations are initialized with a rectan-
gular geometry, which is a severe test for the robustness of

HH
L
il
L

IRl
OO

i
1

Fig. 8 Calculated grid of radial compressor duct with rotational flow.

the numerical scheme, especially for the radial compressor
case. Typically, 170 iterations are required for convergence
using a 0.4 relaxation factor for the velocity field and a 0.1
factor for the radial coordinate field. The computational cost
for the rotational case with the 126 x 30 grid is about 225
CPU seconds in one processor of an Alliant FX-80 machine.

Direct and inverse calculation results for the Mach number
field along with the original (dashed lines) and reproduced
(solid lines) geometries for the axial compressor duct with
irrotational and rotational flow conditions are presented in
Figs. 1 and 2, respectively. The agreement of the direct and
inverse results is very good, although different grids and nu-
merical schemes [(¢, w) formulation for the direct method
and Clebsch formulation for the inverse one] have been em-
ployed.

In the rotational case, part of the incoming rotationality is
introduced via a linear inlet swirl distribution (associated with
a constant peripheral velocity distribution). The distorted out-
flow section observed in Fig. 2 is due to the irregular (¢, )
domain of integration. As it can be seen from Fig. 3, where
the original and reproduced duct walls are compared in more
detail, the outflow section distortion has almost no effect on
the quality of the reproduction of the lateral solid boundaries.
This is expected, since in the near-outflow region, streamwise
gradients of all flow quantities are almost negligible.

The (£, n) grid produced by the inverse method for the
irrotational axial compressor case is shown in Fig. 4. For
irrotational flow conditions the (£, n) grid lines are potential
and (meridional) streamlines, respectively. Note that in axi-
symmetric flows an equidistant grid in the y-wise sense, sim-
ilar to the one employed in the present work, does not cor-
respond to an equidistant grid with respect to the radial
(Cartesian) coordinate. This is very clearly demonstrated in
Fig. 4 where the calculated (¢, ¢) grid is coarser near the
inner wall region.

Reproduction results for the radial compressor duct in terms
of the Mach number field with irrotational and rotational flow
conditions are presented in Figs. 5 and 6, respectively. The
agreement between inverse (solid lines) and direct (dashed
lines) method results is very good despite the facts that the
mean curvature of the duct is quite high and that the grid
employed is not fine enough (in the streamwise sense) to
describe accurately the strong curvature changes observed
along the inner wall.

A detailed comparison of the original and reproduced wall
geometries for the radial compressor duct with rotational flow
conditions is shown in Fig. 7. The corresponding (£, ) grid
produced is included in Fig. 8. It is seen very clearly that in
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the inner flow region grid lines, £ = const and n = const
lines are nonorthogonal. The inlet section, however, is indeed
normal to the incoming flow that is implied by Eq. (32).

Conclusions

The development of an inverse method applicable to the
design of axisymmetric channels with inviscid subsonic rota-
tional flow has been described. Rotationality is due to incom-
ing total enthalpy, entropy, and/or swirl nonuniformities that
are transported downstream along meridional plane stream-
lines. The method is based on a potential/stream function
formulation. The Clebsch transformation has been applied
successfully, to decompose the meridional velocity vector into
a potential and a rotational part using a drift function gov-
erned by a transport equation. An elliptic-type equation for
the meridional velocity magnitude has been derived by treat-
ing the inverse problem as a geometric one on the (¢, ¢)
plane. This equation and the drift transport equation that are
coupled to the design geometry via the radial coordinate, are
solved simultaneously using a simple iterative scheme. Cal-
culated results for two real-life geometries concerning the
nonbladed ducts of a two-stage axial compressor and that of
a radial one are very satisfactory and indicate the reliability
of the proposed design method.
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